Re: Problems on definit integratiion of gaussian profiles
- To: mathgroup at smc.vnet.net
- Subject: [mg86830] Re: [mg86785] Problems on definit integratiion of gaussian profiles
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 22 Mar 2008 00:54:54 -0500 (EST)
- Reply-to: hanlonr at cox.net
Your first expression expr1 = Power[E, Plus[Times[-1, Power[a, 2], Power[c, -2]], Times[-1, Power[d, -2], Power[Plus[b, Times[-1, x]], 2]]]] E^(-(a^2/c^2)-(b-x)^2/d^2) Your second expression expr21 = Power[E, Plus[Times[-1, Power[a, 2], Power[c, -2]], Times[-1, Power[b, 2], Power[d, -2]], Times[2, b, Power[d, -1], x], Times[-1, Power[d, -2], Power[x, 2]]]] E^(-(a^2/c^2) - x^2/d^2 + (2*b*x)/d - b^2/d^2) What your second expression should be expr22 = Power[E, Plus[Times[-1, Power[a, 2], Power[c, -2]], Times[-1, Power[b, 2], Power[d, -2]], Times[2, b, Power[d, -2], x], Times[-1, Power[d, -2], Power[x, 2]]]] E^(-(a^2/c^2) - x^2/d^2 + (2*b*x)/d^2 - b^2/d^2) expr1 == expr22 // Simplify True int1 = Integrate[expr1, {x, -Infinity, Infinity}, Assumptions -> {d > 0}] (d*Sqrt[Pi])/E^(a^2/c^2) int2 = Integrate[expr22, {x, -Infinity, Infinity}, Assumptions -> {d > 0}] (d*Sqrt[Pi])/E^(a^2/c^2) As expected, the results are identical. Bob Hanlon ---- Regaly Zsolt <regaly at konkoly.hu> wrote: > Dear All Mathgroup Fellows! > > I dont understand the behavoir of Mathematica integrating > exponential functions. I try to integrate the same functions in > different forms. The integrands are > > Power[E, Plus[Times[-1, Power[a, 2], Power[c, -2]], Times[-1, Power > [d, -2], \ > Power[Plus[b, Times[-1, x]], 2]]]] > > or > > Power[E, Plus[Times[-1, Power[a, 2], Power[c, -2]], Times[-1, Power > [b, 2], \ > Power[d, -2]], Times[2, b, Power[d, -1], x], Times[-1, Power[d, -2], > Power[x, \ > 2]]]] > > which are the same, but the results will differ. Indeed calculating > definit integral in a -Infinity to Infinity domain, assuming that all > variables are larger than 0, the result will be completly different! > > 1'st case the result will be: > > Times[d, Power[E, Times[-1, Power[a, 2], Power[c, -2]]], Power[Pi, \ > Rational[1, 2]]] > > while in the 2'nd case > > Times[d, Power[E, Plus[Power[b, 2], Times[-1, Power[a, 2], Power[c, > -2]], \ > Times[-1, Power[b, 2], Power[d, -2]]]], Power[Pi, Rational[1, 2]]] > > As You can see the 1'st result is completly independent of b! I dont > understand. How can it be fixed? > > Cheers, > Zsolt Regaly >