Re: Applying the Integration Function to a List Of Regions
- To: mathgroup at smc.vnet.net
- Subject: [mg88753] Re: Applying the Integration Function to a List Of Regions
- From: "David Park" <djmpark at comcast.net>
- Date: Fri, 16 May 2008 05:28:05 -0400 (EDT)
- References: <g0h4me$lbl$1@smc.vnet.net>
regions = {{{x, 0, a}, {cx, 0, a + x}, {y, 0, Sqrt[a^2 - cx^2 + 2 cx x - x^2]}, {cy, 0, Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y}}, {{x, 0, a}, {cx, 0, a + x}, {y, Sqrt[a^2 - cx^2 + 2 cx x - x^2], 2 a - Sqrt[ a^2 - cx^2 + 2 cx x - x^2]}, {cy, -Sqrt[ a^2 - cx^2 + 2 cx x - x^2] + y, Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y}}, {{x, 0, a}, {cx, 0, a + x}, {y, 2 a - Sqrt[a^2 - cx^2 + 2 cx x - x^2], 2 a}, {cy, -Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y, 2 a}}, {{x, a, 2 a}, {cx, -a + x, 2 a}, {y, 0, Sqrt[a^2 - cx^2 + 2 cx x - x^2]}, {cy, 0, Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y}}, {{x, a, 2 a}, {cx, -a + x, 2 a}, {y, Sqrt[a^2 - cx^2 + 2 cx x - x^2], 2 a - Sqrt[ a^2 - cx^2 + 2 cx x - x^2]}, {cy, -Sqrt[ a^2 - cx^2 + 2 cx x - x^2] + y, Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y}}, {{x, a, 2 a}, {cx, -a + x, 2 a}, {y, 2 a - Sqrt[a^2 - cx^2 + 2 cx x - x^2], 2 a}, {cy, -Sqrt[a^2 - cx^2 + 2 cx x - x^2] + y, 2 a}}} Integrate[1, ##] & @@@ regions -- David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ "John Snyder" <jsnyder at wi.rr.com> wrote in message news:g0h4me$lbl$1 at smc.vnet.net... > Assume that I have already determined a list of 4 dimensional regions as > follows: > > regions={{{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 > a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx > x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,2 > a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 > a}},{{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 > a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2 > a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}}}; > > I want to integrate over each of these regions using an integrand of 1. I > want my output to be as follows: > > {Integrate[1,{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 > a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx > x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,2 > a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 > a}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,a,2 > a},{cx,-a+x,2 > a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx > x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}]} > > How can I do that without having to set up each of the integrals manually? > I am looking for some way to do something like: > > Integrate @@ regions > > or > > Integrate @@@ regions > > But I can't figure out how to incorporate the 1 as the integrand when I > try > to set this up automatically. > > There must be a way? > > Thanks, > > John > >