Re: Applying the Integration Function to a List Of Regions
- To: mathgroup at smc.vnet.net
- Subject: [mg88785] Re: [mg88739] Applying the Integration Function to a List Of Regions
- From: DrMajorBob <drmajorbob at att.net>
- Date: Fri, 16 May 2008 05:34:12 -0400 (EDT)
- References: <4815108.1210867784525.JavaMail.root@m08>
- Reply-to: drmajorbob at longhorns.com
Formally, this seems to be what you want: integrate[1,##]&@@@regions {integrate[1,{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx = x-x^2]+y}],integrate[1,{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],integrate[1,{x,0,a},{cx,0,a+x},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}],integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}]} Using capital Integrate integrate works the same way, although it causes the machine to think a VERY long time. Integrate[1, ##] & @@@ regions {(13 a^4)/8, -(1/3) a ((a^2)^(3/2) (4 - 3 \[Pi]) + a^3 (13 + 3 \[Pi])), (13 a^4)/8, ( 13 a^4)/8, 1/3 a^3 (-4 Sqrt[a^2] + a (-13 + 6 \[Pi])), (13 a^4)/8} Bobby On Thu, 15 May 2008 05:51:58 -0500, John Snyder <jsnyder at wi.rr.com> wrote: > Assume that I have already determined a list of 4 dimensional regions as > follows: > regions={{{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 > a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx > x-x^2]+y,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,0,a},{cx,0,a+x},{y,2 > a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 > a}},{{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 > a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}},{{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx x-x^2],2 > a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}}}; > I want to integrate over each of these regions using an integrand of 1. I > want my output to be as follows: > {Integrate[1,{x,0,a},{cx,0,a+x},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 > a-Sqrt[a^2-cx^2+2 cx x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx > x-x^2]+y,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}],Integrate[1,{x,0,a},{cx,0,a+x},{y,2 > a-Sqrt[a^2-cx^2+2 cx x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 > a}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,0,Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,0,Sqrt[a^2-cx^2+2 cx x-x^2]+y}],Integrate[1,{x,a,2 > a},{cx,-a+x,2 > a},{y,Sqrt[a^2-cx^2+2 cx x-x^2],2 a-Sqrt[a^2-cx^2+2 cx > x-x^2]},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,Sqrt[a^2-cx^2+2 cx > x-x^2]+y}],Integrate[1,{x,a,2 a},{cx,-a+x,2 a},{y,2 a-Sqrt[a^2-cx^2+2 cx > x-x^2],2 a},{cy,-Sqrt[a^2-cx^2+2 cx x-x^2]+y,2 a}]} > How can I do that without having to set up each of the integrals > manually? > I am looking for some way to do something like: > Integrate @@ regions > or > Integrate @@@ regions > But I can't figure out how to incorporate the 1 as the integrand when I > try > to set this up automatically. > There must be a way? > Thanks, > John > > > -- DrMajorBob at longhorns.com