       Re: Lorentzian on a baseline

• To: mathgroup at smc.vnet.net
• Subject: [mg89218] Re: Lorentzian on a baseline
• From: dh <dh at metrohm.ch>
• Date: Thu, 29 May 2008 07:06:51 -0400 (EDT)
• References: <g1j6g0\$qne\$1@smc.vnet.net>

```
Hi Fred,

I think you have a problem with local minimas. Therefore, you must give

reasonable starting values for m1,m2 or a better starting value for m3.

E.g. a start value for m3 can easiliy be found by looking at the data

plot. Here is an example:

fun[x_,m1_,m2_,m3_]=m1-m2/((x-m3)^2+m2^2);

dat=Table[{x,fun[x,0.5,2,220]},{x,200,250}];

sol=fun[x,m1,m2,m3]/.FindFit[dat,m1-m2/((x-m3)^2+m2^2),{{m1,0.5},{m2,2},{m3,250}},x,MaxIterations->10000]

Plot[{sol,fun[x,0.5,2,220]},{x,200,250}]

strating value for

m30 fails

m1=210,220,240 o.k.

m=250 fails

hope this helps, Daniel

fred.engles at gmail.com wrote:

> I'm trying to fit a Lorentzian subtracted from a constant baseline,

> using findfit.

>

>  FindFit[rawdata, m1 - m2/((x - m3)^2 + m2^2), {m1, m2, {m3, 250}}, x,

>   MaxIterations -> 10000]

>

> Isn't working - either a totally flat horizantal line, or the

> subtracted 'Lorentzian' looks almost delta-function sharp. Help?

> Thanks!

>

> P.S. Does Experimental Data Analyst work with 6.0.1 (Mac)?

>

--

Daniel Huber

Metrohm Ltd.

Oberdorfstr. 68

CH-9100 Herisau

Tel. +41 71 353 8585, Fax +41 71 353 8907

E-Mail:<mailto:dh at metrohm.com>

Internet:<http://www.metrohm.com>

```

• Prev by Date: Re: simplify polynomial
• Next by Date: Re: NIntegrate
• Previous by thread: Re: Lorentzian on a baseline
• Next by thread: simplify polynomial