Re: Fourier Transform
- To: mathgroup at smc.vnet.net
- Subject: [mg93491] Re: Fourier Transform
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Tue, 11 Nov 2008 07:46:25 -0500 (EST)
- Organization: Uni Leipzig
- References: <gf8rgp$poq$1@smc.vnet.net>
- Reply-to: kuska at informatik.uni-leipzig.de
Hi, ClearSystemCache[] expr = (c^2 Sqrt[2 \[Pi]] DiracDelta[ky + sy] DiracDelta[ sz])/(-c^2 sx^2 - c^2 sy^2 - c^2 sz^2 + \[Omega]^2); $Assumptions = {{x, y, z} \[Element] Reals}; InverseFourierTransform[expr, {sx, sy, sz}, {x, y, z}] // Timing Integrate[ 1/Sqrt[2 \[Pi]] Exp[-I sx x] Exp[-I sy y] Exp[-I sz z] expr, {sx, -\ \[Infinity], \[Infinity]}, {sy, -\[Infinity], \[Infinity]}, {sz, -\ \[Infinity], \[Infinity]}, GenerateConditions -> False] // Timing is not so different. Regards Jens Nikolaus Rath wrote: > Hello, > > Consider the following expression: > > expr = (c^2 Sqrt[2 \[Pi]] > DiracDelta[ky + sy] DiracDelta[sz])/(-c^2 sx^2 - c^2 sy^2 - > c^2 sz^2 + \[Omega]^2); > $Assumptions = {{x, y, z} \[Element] Reals}; > InverseFourierTransform[expr, {sx, sy, sz}, {x, y, z}] // Timing > Integrate[ > 1/Sqrt[2 \[Pi]] Exp[-I sx x] Exp[-I sy y] Exp[-I sz z] > expr, {sx, -\[Infinity], \[Infinity]}, {sy, -\[Infinity], \ > \[Infinity]}, {sz, -\[Infinity], \[Infinity]}] // Timing > > On my system with Mathematica 6, the explicit integration takes 3 > times as long as the InverseFourierTransform and also gives several > additional required assumptions for the same result (e.g. Im[-ky^2 + > \[Omega]^2/c^2] != 0 || Re[-ky^2 + \[Omega]^2/c^2] <= 0). > > How is this possible? Is Mathematica using some special tricks when > evaluating the InverseFourierTransform? > > > Best, > > -Nikolaus > > -- > =C2=BBIt is not worth an intelligent man's time to be in the majority. > By definition, there are already enough people to do that.=C2=AB > -J.H. Hardy > > PGP fingerprint: 5B93 61F8 4EA2 E279 ABF6 02CF A9AD B7F8 AE4E 425C >