Re: FindFit
- To: mathgroup at smc.vnet.net
- Subject: [mg92748] Re: [mg92733] FindFit
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 12 Oct 2008 04:32:21 -0400 (EDT)
- Reply-to: hanlonr at cox.net
As stated in the documentation: "In the nonlinear case, it finds in general only a locally optimal fit." data = Table[ Simplify[Expand[(1/2) ((1 + Sqrt[13])^(2^n) + (1 - Sqrt[13])^(2^n))]], {n, 1, 6}]; model = (1/2) ((a + Sqrt[b])^(2^x) + (a - Sqrt[b])^(2^x)); FindFit[data, model, {a, b}, x] {a->1.79057,b->2.58114} Add constraints and use NMinimize to look beyond the local minima FindFit[data, {model, a > 0, b > 10}, {a, b}, x, Method -> NMinimize] {a->1.05257,b->12.6236} Fix one parameter and look for best fit to other FindFit[data, model /. a -> 1, b, x, Method -> NMinimize] {b->13.} Bob Hanlon ---- Artur <grafix at csl.pl> wrote: ============= Dear Mathematica Gurus, Who have idea which procedure I can use inspite FindFit in following: In[1]: Table[Simplify[Expand[(1/2) ((1 + Sqrt[13])^(2^n) + (1 - Sqrt[13])^(2^n))]], {n, 1, 6}] Out[1]: {14, 248, 102272, 20489142272, 839425017825619607552, 1409268686920894404615927074915795024740352} In[2]: FindFit[{14, 248, 102272, 20489142272, 839425017825619607552, 1409268686920894404615927074915795024740352}, (1/ 2) ((a + Sqrt[b])^(2^x) + (a - Sqrt[b])^(2^x)), {a, b}, x, WorkingPrecision -> 100] Out[2]:{a -> 2.43785286368448657933626328600, b -> 4.95343824602875750402007143975} Should be: {a -> 1.00000000000000000000, b -> 13.000000000000000000} Who have idea how find (true) a,b when I have sequence Best wishes Artur -- Bob Hanlon