Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2008

[Date Index] [Thread Index] [Author Index]

Search the Archive

Pi Formula


Dear Mathematica Gurus,
Who know which another function as Simplify or FullSimplify to use to 
following formula
(Simplify do nothing but FullSimplify simplify too much).
1/8 (-2 I Sqrt[-7 - I] Log[1/5 ((1 - 2 I) + 2 Sqrt[-7 - I])] -
   Log[(3 - 4 I)^Sqrt[7 + I]
      5^((3 - I) (51 - 10 Sqrt[2])^(
      1/4)) ((1 - 2 I) - 2 Sqrt[-7 - I])^((-1 - I) (51 - 10 Sqrt[2])^(
      1/4)) (-5 I + (4 - 2 I) Sqrt[-7 - I])^(-2 Sqrt[
      7 + I]) ((1 + 2 I) - 2 Sqrt[-7 + I])^(2 Sqrt[-7 + I])] -
   I Sqrt[7 - I] Log[(-1 + Sqrt[-1 - I])^2] -
   I Sqrt[7 - I] Log[(1 + Sqrt[-1 - I])^2] -
   Sqrt[7 + I] Log[(-1 + Sqrt[-1 + I])^2] -
   Sqrt[7 + I] Log[(1 + Sqrt[-1 + I])^2] + (1 - 2 I) Sqrt[1 - I]
     Log[(1 + I) - Sqrt[1 - I]] - (2 - I) Sqrt[1 + I]
     Log[(1 + I) - Sqrt[1 - I]] - (1 - 2 I) Sqrt[1 - I]
     Log[(1 + I) + Sqrt[1 - I]] + (2 - I) Sqrt[1 + I]
     Log[(1 + I) + Sqrt[1 - I]] +
   I Sqrt[7 - I] Log[(-60 - 4 I) + 8 Sqrt[-1 - I] - 24 Sqrt[7 - I]] +
   I Sqrt[7 - I] Log[(66 - 14 I) + 8 Sqrt[-1 - I] + 24 Sqrt[7 - I]] +
   Sqrt[7 + I] Log[(-60 + 4 I) + 8 Sqrt[-1 + I] - 24 Sqrt[7 + I]] +
   Sqrt[7 + I] Log[(66 + 14 I) + 8 Sqrt[-1 + I] + 24 Sqrt[7 + I]] +
   I Log[((1 + 2 I) - 2 Sqrt[-7 + I])^(
      2 Sqrt[7 - I]) ((-60 + 4 I) - 16 Sqrt[14 - 2 I])^-Sqrt[-7 -
        I] ((-60 - 4 I) - 16 Sqrt[14 + 2 I])^-Sqrt[
       7 - I] ((-(153/100) + (71 I)/100) + 2/25 Sqrt[287 - 359 I])^
      Sqrt[-7 -
       I] ((-(153/2500) - (71 I)/2500) + 2/625 Sqrt[287 + 359 I])^
      Sqrt[7 - I]])

Best wishes
Artur


  • Prev by Date: Questions on evaluate matrix operations
  • Next by Date: Re: Dynamic tangential plane - how?
  • Previous by thread: Re: Re: Re: Nested If
  • Next by thread: Re: Pi Formula