Re: Pi Formula
- To: mathgroup at smc.vnet.net
- Subject: [mg92923] Re: Pi Formula
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Mon, 20 Oct 2008 07:32:09 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <gcn4ge$7ad$1@smc.vnet.net> <200810120833.EAA08815@smc.vnet.net> <200810181024.GAA15999@smc.vnet.net> <gdevc2$3mg$1@smc.vnet.net>
Artur wrote: > Who know which another function as Simplify or FullSimplify to use to > following formula > (Simplify do nothing but FullSimplify simplify too much). > 1/8 (-2 I Sqrt[-7 - I] Log[1/5 ((1 - 2 I) + 2 Sqrt[-7 - I])] - > Log[(3 - 4 I)^Sqrt[7 + I] > 5^((3 - I) (51 - 10 Sqrt[2])^( > 1/4)) ((1 - 2 I) - 2 Sqrt[-7 - I])^((-1 - I) (51 - 10 Sqrt[2])^( > 1/4)) (-5 I + (4 - 2 I) Sqrt[-7 - I])^(-2 Sqrt[ > 7 + I]) ((1 + 2 I) - 2 Sqrt[-7 + I])^(2 Sqrt[-7 + I])] - > I Sqrt[7 - I] Log[(-1 + Sqrt[-1 - I])^2] - > I Sqrt[7 - I] Log[(1 + Sqrt[-1 - I])^2] - > Sqrt[7 + I] Log[(-1 + Sqrt[-1 + I])^2] - > Sqrt[7 + I] Log[(1 + Sqrt[-1 + I])^2] + (1 - 2 I) Sqrt[1 - I] > Log[(1 + I) - Sqrt[1 - I]] - (2 - I) Sqrt[1 + I] > Log[(1 + I) - Sqrt[1 - I]] - (1 - 2 I) Sqrt[1 - I] > Log[(1 + I) + Sqrt[1 - I]] + (2 - I) Sqrt[1 + I] > Log[(1 + I) + Sqrt[1 - I]] + > I Sqrt[7 - I] Log[(-60 - 4 I) + 8 Sqrt[-1 - I] - 24 Sqrt[7 - I]] + > I Sqrt[7 - I] Log[(66 - 14 I) + 8 Sqrt[-1 - I] + 24 Sqrt[7 - I]] + > Sqrt[7 + I] Log[(-60 + 4 I) + 8 Sqrt[-1 + I] - 24 Sqrt[7 + I]] + > Sqrt[7 + I] Log[(66 + 14 I) + 8 Sqrt[-1 + I] + 24 Sqrt[7 + I]] + > I Log[((1 + 2 I) - 2 Sqrt[-7 + I])^( > 2 Sqrt[7 - I]) ((-60 + 4 I) - 16 Sqrt[14 - 2 I])^-Sqrt[-7 - > I] ((-60 - 4 I) - 16 Sqrt[14 + 2 I])^-Sqrt[ > 7 - I] ((-(153/100) + (71 I)/100) + 2/25 Sqrt[287 - 359 I])^ > Sqrt[-7 - > I] ((-(153/2500) - (71 I)/2500) + 2/625 Sqrt[287 + 359 I])^ > Sqrt[7 - I]]) Arthur, Calling the above expression "expr", we have In[5]:= FullSimplify[expr] Out[5]= Pi If I have understood your correctly, you wish to have something more complicated than Pi, yet simpler than the original expr, which begs the question: What do you expect? Perhaps *PowerExpand* is what you are looking for (though the leaf count is not that much different)? In[7]:= pw = PowerExpand[expr]; In[8]:= LeafCount /@ {expr, pw} Out[8]= {590, 582} Or you may want to tweak/build your own *ComplexityFunction*. See http://reference.wolfram.com/mathematica/ref/ComplexityFunction.html Regards, -- Jean-Marc
- References:
- Re: error region in parametric plot
- From: m.r@inbox.ru
- Re: Re: Re: Nested If
- From: Syd Geraghty <sydgeraghty@me.com>
- Re: error region in parametric plot