Re: Pi Formula
- To: mathgroup at smc.vnet.net
- Subject: [mg92935] Re: Pi Formula
- From: Artur <grafix at csl.pl>
- Date: Mon, 20 Oct 2008 07:34:29 -0400 (EDT)
- References: <gcn4ge$7ad$1@smc.vnet.net> <200810120833.EAA08815@smc.vnet.net> <200810181024.GAA15999@smc.vnet.net> <gdevc2$3mg$1@smc.vnet.net> <48FB11BF.8010600@gmail.com>
- Reply-to: grafix at csl.pl
Dear Jean-Marc, Yes, I want do this expression some more complicated as Pi and less complicated as recent form to understand where Pi is hidden because after run e.g. a={};k=Expand[expr];Do[AppendTo[a,FullSimplify[k[[n]]]],{n,1,Length[k]}];a we don't see yet this evidently. Best wishes Artur Jean-Marc Gulliet pisze: > Artur wrote: > >> Who know which another function as Simplify or FullSimplify to use to >> following formula >> (Simplify do nothing but FullSimplify simplify too much). >> 1/8 (-2 I Sqrt[-7 - I] Log[1/5 ((1 - 2 I) + 2 Sqrt[-7 - I])] - >> Log[(3 - 4 I)^Sqrt[7 + I] >> 5^((3 - I) (51 - 10 Sqrt[2])^( >> 1/4)) ((1 - 2 I) - 2 Sqrt[-7 - I])^((-1 - I) (51 - 10 Sqrt[2])^( >> 1/4)) (-5 I + (4 - 2 I) Sqrt[-7 - I])^(-2 Sqrt[ >> 7 + I]) ((1 + 2 I) - 2 Sqrt[-7 + I])^(2 Sqrt[-7 + I])] - >> I Sqrt[7 - I] Log[(-1 + Sqrt[-1 - I])^2] - >> I Sqrt[7 - I] Log[(1 + Sqrt[-1 - I])^2] - >> Sqrt[7 + I] Log[(-1 + Sqrt[-1 + I])^2] - >> Sqrt[7 + I] Log[(1 + Sqrt[-1 + I])^2] + (1 - 2 I) Sqrt[1 - I] >> Log[(1 + I) - Sqrt[1 - I]] - (2 - I) Sqrt[1 + I] >> Log[(1 + I) - Sqrt[1 - I]] - (1 - 2 I) Sqrt[1 - I] >> Log[(1 + I) + Sqrt[1 - I]] + (2 - I) Sqrt[1 + I] >> Log[(1 + I) + Sqrt[1 - I]] + >> I Sqrt[7 - I] Log[(-60 - 4 I) + 8 Sqrt[-1 - I] - 24 Sqrt[7 - I]] + >> I Sqrt[7 - I] Log[(66 - 14 I) + 8 Sqrt[-1 - I] + 24 Sqrt[7 - I]] + >> Sqrt[7 + I] Log[(-60 + 4 I) + 8 Sqrt[-1 + I] - 24 Sqrt[7 + I]] + >> Sqrt[7 + I] Log[(66 + 14 I) + 8 Sqrt[-1 + I] + 24 Sqrt[7 + I]] + >> I Log[((1 + 2 I) - 2 Sqrt[-7 + I])^( >> 2 Sqrt[7 - I]) ((-60 + 4 I) - 16 Sqrt[14 - 2 I])^-Sqrt[-7 - >> I] ((-60 - 4 I) - 16 Sqrt[14 + 2 I])^-Sqrt[ >> 7 - I] ((-(153/100) + (71 I)/100) + 2/25 Sqrt[287 - 359 I])^ >> Sqrt[-7 - >> I] ((-(153/2500) - (71 I)/2500) + 2/625 Sqrt[287 + 359 I])^ >> Sqrt[7 - I]]) > > Arthur, > > Calling the above expression "expr", we have > > In[5]:= FullSimplify[expr] > > Out[5]= Pi > > If I have understood your correctly, you wish to have something more > complicated than Pi, yet simpler than the original expr, which begs > the question: What do you expect? Perhaps *PowerExpand* is what you > are looking for (though the leaf count is not that much different)? > > In[7]:= pw = PowerExpand[expr]; > > In[8]:= LeafCount /@ {expr, pw} > > Out[8]= {590, 582} > > Or you may want to tweak/build your own *ComplexityFunction*. See > > http://reference.wolfram.com/mathematica/ref/ComplexityFunction.html > > > Regards, > -- Jean-Marc > > __________ Information from ESET NOD32 Antivirus, version of virus > signature database 3535 (20081018) __________ > > The message was checked by ESET NOD32 Antivirus. > > http://www.eset.com > > >
- References:
- Re: error region in parametric plot
- From: m.r@inbox.ru
- Re: Re: Re: Nested If
- From: Syd Geraghty <sydgeraghty@me.com>
- Re: error region in parametric plot