Re: compelling evaluation
- To: mathgroup at smc.vnet.net
- Subject: [mg93205] Re: [mg93175] compelling evaluation
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Fri, 31 Oct 2008 03:05:17 -0500 (EST)
- References: <200810300701.CAA00563@smc.vnet.net>
randolph.silvers at deakin.edu.au wrote: > I have created a function from a PDF and so it is non-zero on the unit > interval and 0 elsewhere. But when I try to integrate some function of > that function, it is not evaluated. How can I get it to be evaluated? > > For example, > > project=UniformDistribution[{0,1}]; > f[y_]:=PDF[project,y]/(CDF[project,1] - CDF[project,0]); > F[y_]:=Integral_0^y f[z]dz; > > Now, I define > > pi0[y_]:= F[y] > pi1[y_]:= Integral_y^1 (1-q) f[q] dq > pi2[y_]:= Integral_y^1 q f[q] dq > T[y_]:= Integral_y^1 (q-y) f[q] dq > > When I enter a numerical value, each is correctly computed; when I > differentiate, it also looks correct. For example, > > D[T[y],y] returns > > Integral_y^1 -{1 0<=q<=1 dq > > and, T[pistar] returns > > Integral_pistar^1 (-pistar + q)({1 0 <=q <= 1) dq > > How can I compel Mathematica to "know" or evaluate T[pistar] and > return the symbolic expression assuming that q is in the relevant > domain? > > Then, D[T[y],y] would return -(1-y) and T[pistar] would return: > > 1/2 - pistar + pistar^2/2 You appear to be using TeX notation in places where you probably want Mathematica to be used instead. I start with project = UniformDistribution[{0,1}]; f[y_] := PDF[project,y]/(CDF[project,1] - CDF[project,0]); T[y_] := Integrate[(q-y)*f[q], {q,y,1}] Then one can use Assuming[...Refine[...]] to enforce the domain restrictions. In[9]:= InputForm[Assuming[0<y<1, Refine[D[T[y],y]]]] Out[9]//InputForm= (-2 + 2*y)/2 In[12]:= InputForm[Assuming[0<pistar<1, Refine[T[pistar]]]] Out[12]//InputForm= (1 - 2*pistar + pistar^2)/2 I will note that without the domain restrictions, you can still get reasonable results expressed via Piecewise. Daniel Lichtblau Wolfram Research
- References:
- compelling evaluation
- From: randolph.silvers@deakin.edu.au
- compelling evaluation