Re: phase-space versus controlling parameter surface
- To: mathgroup at smc.vnet.net
- Subject: [mg91737] Re: phase-space versus controlling parameter surface
- From: Luca Petrone <luke-sky-walker at hotmail.it>
- Date: Sun, 7 Sep 2008 05:33:14 -0400 (EDT)
Dear All, I am interested in plotting a surface of the phase-space versus a controlling parameter, e.g. the B in a Duffing's equation x'[t] == v[t] v'[t] == - x[t]^3 - k v[t] + B Cos[t] that is, in the space {x[t], v[t], B} for a known k and B varying from Bmin to Bmax I tryed something like : ParametricPlot3D[ Evaluate[{x[t], v[t], B} /. NDSolve[{v'[t] == - x[t]^3 - k v[t] + B Cos[t], x'[t] == v[t], x[0] == 1, v[0] == 0}, {x=, v}, {t, 0, 2000}, MaxSteps -> Infinity] ], {t, 1950, 1950 + 4 Pi}, {B, 0.2, 0.6}] but without success. Is there any way to get it ? Thank you very much for your help. Yours, Luca P. Milano - Italy (I re-edited the message, I had some problem with 7-bit... sorry..)
- Follow-Ups:
- Re: Re: phase-space versus controlling parameter surface
- From: danl@wolfram.com
- Re: Re: phase-space versus controlling parameter surface