Re: Re: phase-space versus controlling parameter surface
- To: mathgroup at smc.vnet.net
- Subject: [mg91783] Re: [mg91737] Re: phase-space versus controlling parameter surface
- From: danl at wolfram.com
- Date: Sun, 7 Sep 2008 22:54:08 -0400 (EDT)
- References: <200809070933.FAA25419@smc.vnet.net>
> Dear All, > > I am interested in plotting a surface of the phase-space versus a > controlling parameter, e.g. the B in a Duffing's equation > > x'[t] == v[t] > v'[t] == - x[t]^3 - k v[t] + B Cos[t] > > that is, in the space {x[t], v[t], B} for a known k and B varying from > Bmin to Bmax > I tryed something like : > > ParametricPlot3D[ Evaluate[{x[t], v[t], B} /. NDSolve[{v'[t] == - x[t]^3 - > k v[t] + B Cos[t], x'[t] == v[t], x[0] == 1, v[0] == 0}, {x=, v}, {t, 0, > 2000}, MaxSteps -> Infinity] ], {t, 1950, 1950 + 4 Pi}, {B, 0.2, 0.6}] > > but without success. > Is there any way to get it ? > > Thank you very much for your help. > > Yours, > Luca P. > Milano - Italy > > (I re-edited the message, I had some problem with 7-bit... sorry..) > There are probably better ways, but you can do a list plot provided you first specify a value for k. Here is an example. k = .3; Clear[g]; g[b_?NumberQ] := g[b] = {x[t], v[t], b} /. First[NDSolve[{x'[t] == v[t] , v'[t] == -x[t]^3 - k*v[t] + b*Cos[t], x[0] == 1, v[0] == 0}, {x, v}, {t, 0, 2000}, MaxSteps -> Infinity]] pts = Table[ Evaluate[Table[g[b], {b, 0.2, 0.6, .01}]], {t, 1950, 2000}]; Now do: ListPlot3D[Flatten[pts, 1]] What I obtained can best be described as the proverbial kitchen sink. Daniel Lichtblau Wolfram Research
- References:
- Re: phase-space versus controlling parameter surface
- From: Luca Petrone <luke-sky-walker@hotmail.it>
- Re: phase-space versus controlling parameter surface