Re: phase-space versus controlling parameter surface
- To: mathgroup at smc.vnet.net
- Subject: [mg91733] Re: phase-space versus controlling parameter surface
- From: Jens-Peer Kuska <kuska at informatik.uni-leipzig.de>
- Date: Sun, 7 Sep 2008 05:32:28 -0400 (EDT)
- References: <g9t6r5$jd9$1@smc.vnet.net>
Hi, your input is a bit corrupted but, and a bundel of lines is not a surface ode = {x'[t] == v[t], v'[t] == -x[t] 3 - k v[t] + B Cos[t]}; init = {x[0] == 1, v[0] == 0}; DuffingLine[kk_?NumericQ, Bb_?NumericQ, {t_, t0_, t1_}] := Module[{sol}, sol = NDSolve[Join[ode, init] /. {k -> kk, B -> Bb}, {x[t], v[t]}, {t, t0, t1}]; ParametricPlot3D[{t, x[t], v[t]} /. sol, {t, t0, t1}][[1]] ] alllines = Table[DuffingLine[0.1, 1, {t, 0, 4 Pi}], {k, 0.0001, 1, 0.01}, {b, 0.0, 2, 0.05}]; alllines = Table[DuffingLine[0.1, 1, {t, 0, 4 Pi}], {k, 0.0001, 1, 0.01}, {b, 0.0, 2, 0.05}]; Graphics3D[alllines] BTW MathGL3d line illumination will give you the illusion of a surface with Get["MathGL3d`"] MVShow3D[Graphics3D[alllines /. _Hue :> Sequence[]], MVNewScene -> True] Regards Jens Luca Petrone wrote: > Dear All, > > I am interested in plotting a surface of the phase-space versus a controlling parameter, e.g. the B in a Duffing's equation > > x'[t] == v[t]v'[t] == - x[t]^3 - k v[t] + B Cos[t] > > that is=2C in the space {x[t]=2C v[t]=2C B} for a known k and B varying from Bmin to BmaxI tryed something like : > > ParametricPlot3D[ Evaluate[{x[t]=2C v[t]=2C B} /. NDSolve[{v'[t] == - x[t]^3 - k v[t] + B Cos[t]=2C x'[t] == v[t]=2C x[0] === > 1=2C v[0] == 0}=2C {x=2C v}=2C {t=2C 0=2C 2000}=2C MaxSteps -> Infinity] ]=2C {t=2C 1950=2C 1950 + 4 Pi}=2C {B=2C 0.2=2C 0.6}] > > but without success.Is there any way to get it ? > Thank you very much for your help. > > Yours=2C > Luca P.Milano - Italy > _________________________________________________________________ >