Re: integration frustration
- To: mathgroup at smc.vnet.net
- Subject: [mg91928] Re: integration frustration
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 13 Sep 2008 05:54:15 -0400 (EDT)
- References: <gadcke$riv$1@smc.vnet.net>
Replacedwings schrieb: > Dear All, > > I have a question about a particular integral: > > > i[r]= Integrate[(L-z)(f[Sqrt[z^2+r^2]] -f[z]),{z,0,L}] > > > Assumptions->f[0]==0, f[r]>0 if r>0. > > Is i[r]>=0 for all r? > No > Any Ideas? > Yes > Help! > > TIA, > > Chris > Hi Chris, here is a simple counter-example: In[1]:= i[r_] = Integrate[(L - z)*(f[Sqrt[z^2 + r^2]] - f[z]), {z, 0, L}]; In[2]:= f[x_] := Piecewise[{{1, 0 < x < L/10}, {1/10, L/10 <= x <= L}}] Assuming[L > 0, ((Print[#1]; #1) & )[Factor[i[L/2]]] >= 0 // Simplify] During evaluation of In[2]:= ((-173 + 50*Sqrt[3])*L^2)/1000 Out[3]= False f being a strictly increasing function is obviously sufficient for i[r]>=0 for all real r. Cheers, Peter