Re: solving for a second function
- To: mathgroup at smc.vnet.net
- Subject: [mg102344] Re: [mg102308] solving for a second function
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Thu, 6 Aug 2009 06:30:57 -0400 (EDT)
- References: <200908050942.FAA18127@smc.vnet.net>
Roger Bagula wrote: > Yesterday I got an half Lemniscate complex function: > a = 1; b = 1; > f[t_] = (a*1 + b*I)/(a*1 + b*I*Exp[t]) - 1 > FullSimplify[f[t]/f[t/2]] > gives: > (1 + 1/(Cosh[t/2] + I*Sinh[t/2])) > I want to solve for the other function: > g[t]/g[t/2]=(1 + 1/(-Cosh[t/2] + I*Sinh[t/2])) > > Graphics showing this:x = Re[1 + 1/(Cosh[t] + I*Sinh[t])]; > y = Im[1 + 1/(Cosh[t] + I*Sinh[t])]; > z = x + I*y; > g1 = ParametricPlot[{x, y}, {t, -5*Pi, 5*Pi}, AspectRatio -> > Automatic] > (*The other half is: *) > x = Re[1 + 1/(-Cosh[t] + I*Sinh[t])]; > y = Im[1 + 1/(-Cosh[t] + I*Sinh[t])]; > z = x + I*y; > g0 = ParametricPlot[{x, y}, {t, -5*Pi, 5*Pi}, AspectRatio -> > Automatic] > Show[{g1, g0}] > > Any help will be appreciated. > Roger Bagula Not quite in the requested form, but here goes. Start with: x = Re[1 + 1/(Cosh[t] + I*Sinh[t])]; y = Im[1 + 1/(Cosh[t] + I*Sinh[t])]; We translate so it is centered at the origin, then form a parametrization in terms of rational functions, by converting to exponentials and swapping Exp[t] for a new variable, r. ratparam = Together[TrigToExp[ ComplexExpand[TranslationTransform[{-1, 0}][{x, y}]]] /. Exp[n_.*t] -> r^n] From here we observe that the other parametrization is from swapping x<-->-x, or alternatively by a 108 degree rotation. We compute this. otherratparam = RotationTransform[Pi][ratparam]; Now translate back to the original coordinates (where the figure is centered at {1,0}, then convert to exponentials. In[359]:= otherratparamtrans = Simplify[TranslationTransform[{1, 0}][otherratparam] /. r -> Exp[t]] Out[359]= {1 - (E^t + E^(3 t))/(1 + E^(4 t)), (E^t (-1 + E^(2 t)))/( 1 + E^(4 t))} Daniel Lichtblau Wolfram Research
- References:
- solving for a second function
- From: Roger Bagula <roger.bagula@gmail.com>
- solving for a second function