Re: Can't reproduce a solution found in a paper using
- To: mathgroup at smc.vnet.net
- Subject: [mg102859] Re: [mg102845] Can't reproduce a solution found in a paper using
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 31 Aug 2009 06:33:46 -0400 (EDT)
- Reply-to: hanlonr at cox.net
The expression being integrated is
expr1 = J*((\[Rho]*J)/(2*t))*(x*(a - x) -
8*a^2/Pi^3*
Sum[((Cosh[((2*m + 1)*Pi*y)/a]/
Cosh[((2*m + 1)*Pi*b)/a])*
Sin[((2*m + 1)*Pi*x)/a])/(2*m + 1)^3,
{m, 0, Infinity}]);
Expand this out
expr2 = expr1 // Expand
-((4*a^2*J^2*\[Rho]*
Sum[(Sech[(Pi*b*(2*m + 1))/a]*
Sin[(Pi*(2*m + 1)*x)/a]*
Cosh[(Pi*(2*m + 1)*y)/a])/
(2*m + 1)^3, {m, 0, Infinity}])/
(Pi^3*t)) + (a*J^2*x*\[Rho])/(2*t) -
(J^2*x^2*\[Rho])/(2*t)
The individual terms of the sum are
expr3 = Last[expr2] /.
(Sum[z_, {__}] :> z)
-((4*a^2*J^2*\[Rho]*Sech[(Pi*b*(2*m + 1))/
a]*Sin[(Pi*(2*m + 1)*x)/a]*
Cosh[(Pi*(2*m + 1)*y)/a])/
(Pi^3*(2*m + 1)^3*t))
Integrating these individual terms of the sum
expr4 = Simplify[
Integrate[expr3, {y, 0, b}, {x, 0, a}],
Element[m, Integers]]
-((8*a^4*J^2*\[Rho]*Tanh[(Pi*b*(2*m + 1))/
a])/((2*Pi*m + Pi)^5*t))
The other terms of expr2 are
expr5 = Most[expr2]
(a*J^2*x*\[Rho])/(2*t) - (J^2*x^2*\[Rho])/
(2*t)
Integrating these
expr6 = Integrate[expr5, {y, 0, b}, {x, 0, a}]
(a^3*b*J^2*\[Rho])/(12*t)
soln = (expr6 + Sum[expr4, {m, 0, Infinity}])
Sum[-((8*a^4*J^2*\[Rho]*Tanh[
(Pi*b*(2*m + 1))/a])/
((2*Pi*m + Pi)^5*t)),
{m, 0, Infinity}] + (a^3*b*J^2*\[Rho])/
(12*t)
Which is the result provided in the paper
Bob Hanlon
---- Neelsonn <neelsonn at gmail.com> wrote:
=============
Guys,
This is what I want to solve:
J \!\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(b\)]\(
\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(a\)]
\(\*FractionBox[\(\[Rho]\ J\), \(2\ t\)]\)[x \((a - x)\) -
FractionBox[\(8
\*SuperscriptBox[\(a\), \(2\)]\),
SuperscriptBox[\(\[Pi]\), \(3\)]] \(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)]
\*SuperscriptBox[\((2 m + 1)\), \(-3\)]\ *\
\*FractionBox[\(Cosh[
\*FractionBox[\(\((2 m + 1)\) \[Pi]\ y\), \(a\)]]\), \(Cosh[
\*FractionBox[\(\((2 m + 1)\) \[Pi]\ b\), \(a\)]]\)]\ *\ Sin[
\*FractionBox[\(\((2 m +
1)\) \[Pi]\ x\), \(a\)]]\)] \[DifferentialD]x \
\[DifferentialD]y\)\)
...and this is the solution that I found in a publication:
(\[Rho] J^2)/(2 t)*[(a^3 b)/6 - (16 a^4)/\[Pi]^5 \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)]\(
SuperscriptBox[\((2 m + 1)\), \(-5\)] Tanh[
\*FractionBox[\(\((2 m + 1)\) \[Pi]\ b\), \(a\)]]\)\)]
I am simply not able to reproduce that with Mathematica. The obvious
questions is: why? If someone would be willing to have a look at the
the paper I could sent it over. I may say that the paper dated back
from the 70's and at that time Mathematica wasn't available (people
were smart at that time!!!! lol)
Thanks again,
N
--
Bob Hanlon