Re: Can't reproduce a solution found in a paper using
- To: mathgroup at smc.vnet.net
- Subject: [mg102859] Re: [mg102845] Can't reproduce a solution found in a paper using
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 31 Aug 2009 06:33:46 -0400 (EDT)
- Reply-to: hanlonr at cox.net
The expression being integrated is expr1 = J*((\[Rho]*J)/(2*t))*(x*(a - x) - 8*a^2/Pi^3* Sum[((Cosh[((2*m + 1)*Pi*y)/a]/ Cosh[((2*m + 1)*Pi*b)/a])* Sin[((2*m + 1)*Pi*x)/a])/(2*m + 1)^3, {m, 0, Infinity}]); Expand this out expr2 = expr1 // Expand -((4*a^2*J^2*\[Rho]* Sum[(Sech[(Pi*b*(2*m + 1))/a]* Sin[(Pi*(2*m + 1)*x)/a]* Cosh[(Pi*(2*m + 1)*y)/a])/ (2*m + 1)^3, {m, 0, Infinity}])/ (Pi^3*t)) + (a*J^2*x*\[Rho])/(2*t) - (J^2*x^2*\[Rho])/(2*t) The individual terms of the sum are expr3 = Last[expr2] /. (Sum[z_, {__}] :> z) -((4*a^2*J^2*\[Rho]*Sech[(Pi*b*(2*m + 1))/ a]*Sin[(Pi*(2*m + 1)*x)/a]* Cosh[(Pi*(2*m + 1)*y)/a])/ (Pi^3*(2*m + 1)^3*t)) Integrating these individual terms of the sum expr4 = Simplify[ Integrate[expr3, {y, 0, b}, {x, 0, a}], Element[m, Integers]] -((8*a^4*J^2*\[Rho]*Tanh[(Pi*b*(2*m + 1))/ a])/((2*Pi*m + Pi)^5*t)) The other terms of expr2 are expr5 = Most[expr2] (a*J^2*x*\[Rho])/(2*t) - (J^2*x^2*\[Rho])/ (2*t) Integrating these expr6 = Integrate[expr5, {y, 0, b}, {x, 0, a}] (a^3*b*J^2*\[Rho])/(12*t) soln = (expr6 + Sum[expr4, {m, 0, Infinity}]) Sum[-((8*a^4*J^2*\[Rho]*Tanh[ (Pi*b*(2*m + 1))/a])/ ((2*Pi*m + Pi)^5*t)), {m, 0, Infinity}] + (a^3*b*J^2*\[Rho])/ (12*t) Which is the result provided in the paper Bob Hanlon ---- Neelsonn <neelsonn at gmail.com> wrote: ============= Guys, This is what I want to solve: J \!\( \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(b\)]\( \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(a\)] \(\*FractionBox[\(\[Rho]\ J\), \(2\ t\)]\)[x \((a - x)\) - FractionBox[\(8 \*SuperscriptBox[\(a\), \(2\)]\), SuperscriptBox[\(\[Pi]\), \(3\)]] \( \*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)] \*SuperscriptBox[\((2 m + 1)\), \(-3\)]\ *\ \*FractionBox[\(Cosh[ \*FractionBox[\(\((2 m + 1)\) \[Pi]\ y\), \(a\)]]\), \(Cosh[ \*FractionBox[\(\((2 m + 1)\) \[Pi]\ b\), \(a\)]]\)]\ *\ Sin[ \*FractionBox[\(\((2 m + 1)\) \[Pi]\ x\), \(a\)]]\)] \[DifferentialD]x \ \[DifferentialD]y\)\) ...and this is the solution that I found in a publication: (\[Rho] J^2)/(2 t)*[(a^3 b)/6 - (16 a^4)/\[Pi]^5 \!\( \*UnderoverscriptBox[\(\[Sum]\), \(m = 0\), \(\[Infinity]\)]\( SuperscriptBox[\((2 m + 1)\), \(-5\)] Tanh[ \*FractionBox[\(\((2 m + 1)\) \[Pi]\ b\), \(a\)]]\)\)] I am simply not able to reproduce that with Mathematica. The obvious questions is: why? If someone would be willing to have a look at the the paper I could sent it over. I may say that the paper dated back from the 70's and at that time Mathematica wasn't available (people were smart at that time!!!! lol) Thanks again, N -- Bob Hanlon