trace equals determinant
- To: mathgroup at smc.vnet.net
- Subject: [mg105463] trace equals determinant
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 4 Dec 2009 04:30:28 -0500 (EST)
- Reply-to: rlbagulatftn at yahoo.com
This idea as a general form came from some special matrices that I ran into: These three matrices in 4x4 matrices share the property that their determinant is equal to their trace: a = {{0, 1, 1, 1}, {1, -1, 0, 0}, {1, 0, -1, 0}, {1, 0, 0, -1}} atrace = Sum[a[[n, n]], {n, 1, Length[a]}] -3 adet = Det[a] -3 a2 = a.a {{3, -1, -1, -1}, {-1, 2, 1, 1}, {-1, 1, 2, 1}, {-1, 1, 1, 2}} a2trace = Sum[a2[[n, n]], {n, 1, Length[a]}] 9 adet = Det[a2] 9 aa = a2 + 2*a {{3, 1, 1, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}, {1, 1, 1, 0}} Det[a2 + 2*a] 3 Sum[aa[[n, n]], {n, 1, Length[a]}] 3 A little analysis applied the idea of the determinant equaling the trace in the 2x2 matrix gave: {{a,1}, {-1,1}} Using that in a matrix Markov recursion I got two ways to look at it: 1) varying "a" as an integer in the rows 2) looking at the polynomial in "a" generated as coefficients One of them gave a sequence already in OEIS by another method of recursion. The general 3x3 problem of the determinant equaling the trace isn't this simple. %I A167925 %S A167925 0,1,1,1,2,3,0,2,6,12,1,0,9,32,75,1,4,9,80,275,684,0,8,0,192,1000, %T A167925 3240,8232,1,8,27,448,3625,15336,47677,122368,1,0,81,1024,13125, %U A167925 72576,276115,835584,2158569,0,16,162,2304,47500,343440,1599066 %V A167925 0,1,1,1,2,3,0,2,6,12,-1,0,9,32,75,-1,-4,9,80,275,684,0,-8,0,192,1000, %W A167925 3240,8232,1,-8,-27,448,3625,15336,47677,122368,1,0,-81,1024,13125, %X A167925 72576,276115,835584,2158569,0,16,-162,2304,47500,343440,1599066 %N A167925 A triangular sequence of the Matrix Markov type based on the 2x2 matrix: m={{a,1},{-1,1}}; which has determinant equal to trace. %C A167925 Row sums are: %C A167925 {0, 2, 6, 20, 115, 1043, 12656, 189420, 3356913, 68661516, 1591360540,...} %C A167925 Each row is a specific Markov sequence with a different limiting ratio. %e A167925 {0}, %e A167925 {1, 1}, %e A167925 {1, 2, 3}, %e A167925 {0, 2, 6, 12}, %e A167925 {-1, 0, 9, 32, 75}, %e A167925 {-1, -4, 9, 80, 275, 684}, %e A167925 {0, -8, 0, 192, 1000, 3240, 8232}, %e A167925 {1, -8, -27, 448, 3625, 15336, 47677, 122368}, %e A167925 {1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569}, %e A167925 {0, 16, -162, 2304, 47500, 343440, 1599066, 5705728, 16953624, 44010000}, %e A167925 {-1, 32, -243, 5120, 171875, 1625184, 9260657, 38961152, 133155495, 390500000, 1017681269} %t A167925 Clear[m, a, n, v]; %t A167925 m = {{a, 1}, {-1, 1}}; %t A167925 v[0] := {0, 1}; %t A167925 v[n_] := v[n] = m.v[n - 1]; %t A167925 Table[v[n][[1]], {n, 0, 10}, {a, 0, n}]; %t A167925 Flatten[%] %K A167925 sign %O A167925 0,5 %A A167925 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009 %S A129267 1,1,1,0,1,1,1,1,1,1,1,3,2,1,1,0,2,5,3,1,1,1,2,2,7,4,1,1,1,5, %T A129267 7,1,9,5,1,1,0,3,12,15,1,11,6,1,1,1,3,3,21,26,4,13,7,1,1 %V A129267 1,1,1,0,1,1,-1,-1,1,1,-1,-3,-2,1,1,0,-2,-5,-3,1,1,1,2,-2,-7,-4,1,1,1,5, %W A129267 7,-1,-9,-5,1,1,0,3,12,15,1,-11,-6,1,1,-1,-3,3,21,26,4,-13,-7,1,1 %E A129267 New method of calculation: The triangular sequence is a set of matrix Markov coefficients for the determinant equals trace 2x2 matrix: m {{a, 1}, {-1, 1}} which is an entirely different and new method of obtaining this sequence. Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009 %C A129267 Contribution from Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009: (Start) %C A129267 Row sums are ( for the first row as zero): %C A129267 {0, 1, 2, 2, 0, -4, -8, -8, 0, 16, 32,...} %C A129267 This sequence is closely related to A167925. (End) %e A129267 Contribution from Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009: (Start) %e A129267 {0}, %e A129267 {1}, %e A129267 {1, 1}, %e A129267 {0, 1, 1}, %e A129267 {-1, -1, 1, 1}, %e A129267 {-1, -3, -2, 1, 1}, %e A129267 {0, -2, -5, -3, 1, 1}, %e A129267 {1, 2, -2, -7, -4, 1, 1}, %e A129267 {1, 5, 7, -1, -9, -5, 1, 1}, %e A129267 {0, 3, 12, 15, 1, -11, -6, 1, 1}, %e A129267 {-1, -3, 3, 21, 26, 4, -13, -7, 1, 1} (End) %t A129267 Contribution from Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009: (Start) %t A129267 Clear[m, a, n, v]; %t A129267 m = {{a, 1}, {-1, 1}}; %t A129267 v[0] := {0, 1}; %t A129267 v[n_] := v[n] = m.v[n - 1]; %t A129267 Table[CoefficientList[v[n][[1]], a], {n, 0, 10}]; %t A129267 Flatten[%] (End) %Y A129267 A167925 [From Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Nov 15 2009] Some messing around with 4x4 matrices prompted by posts in true number theory by Kermit Rose gave rise to some new thoughts on the problem: Looking at a two diagonal ( infinite) matrix: the middle diagonal is: 1/n^s The second diagonal is 1/(1-1/Prime[n]^s) with an {0,Infinity} element of one. Since the Limit[1/n^s,n->Infinity]=0 Limit[1/(1-1/Prime[n]^s),n->Infinity]=1 The result is: Trace=Zeta[s] Determinant=Zeta[s] CharacteristicPolynomial[M,x]=Product[1/n^s-x,{n,1,Infinity}]+Zeta[s] That is a very strange infinite polynomial with roots maybe impossible to find? Don't even know if it works really. I invented this two column matrix set to test the Zeta[s] infinite form that I invented: %I A168676 %S A168676 1,0,1,1,1,1,2,1,2,1,3,1,3,3,1,4,1,4,6,4,1,5,1,5,10,10,5,1, %T A168676 6,1,6,15,20,15,6,1,7,1,7,21,35,35,21,7,1,8,1,8,28,56,70,56, %U A168676 28,8,1,9,1,9,36,84,126,126,84,36,9,1 %V A168676 -1,0,-1,1,-1,1,2,-1,2,-1,3,-1,3,-3,1,4,-1,4,-6,4,-1,5,-1,5,-10,10,-5,1, %W A168676 6,-1,6,-15,20,-15,6,-1,7,-1,7,-21,35,-35,21,-7,1,8,-1,8,-28,56,-70,56, %X A168676 -28,8,-1,9,-1,9,-36,84,-126,126,-84,36,-9,1 %N A168676 Coefficients of characteristic polynomials for a two diagonal Matrix type that has determinant equal to trace:M(n)=Table[If[ k === m && m < n, 1, If[k == m + 1, 1, If[k == 1 && m == n, (-1)^(n + 1)*(n - 1), 0]]], {k, n}, {m, n}] %C A168676 This set of matrices was constructed so that the determinant would be equal to the trace. %C A168676 This system is interesting because the result contains a signed Pascal's triangle. %C A168676 The initial term is adjusted to {-1} to fit the first column. %C A168676 Row sums are:{-1, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}. %e A168676 {-1}, %e A168676 {0, -1}, %e A168676 {1, -1, 1}, %e A168676 {2, -1, 2, -1}, %e A168676 {3, -1, 3, -3, 1}, %e A168676 {4, -1, 4, -6, 4, -1}, %e A168676 {5, -1, 5, -10, 10, -5, 1}, %e A168676 {6, -1, 6, -15, 20, -15, 6, -1}, %e A168676 {7, -1, 7, -21, 35, -35, 21, -7, 1}, %e A168676 {8, -1, 8, -28, 56, -70, 56, -28, 8, -1}, %e A168676 {9, -1, 9, -36, 84, -126, 126, -84, 36, -9, 1} %t A168676 Clear[M, n, m, k] %t A168676 M[n_] := Table[If[ k == m && m < n, 1, If[k == m + 1, 1, If[k == 1 && m == n, (-1)^(n + 1)*(n - 1), 0]]], {k, n}, {m,n}] %t A168676 TableForm[Table[M[n], {n, 1, 10}]] %t A168676 Table[Det[M[n]], {n, 1, 10}] %t A168676 Table[Sum[M[n][[k, k]], {k, 1, n}], {n, 1, 10}] %t A168676 a = Join[{{-1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 10}]] %t A168676 Flatten[a] %K A168676 nonn %O A168676 0,7 %A A168676 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 02 2009 Getting this to work was a little hard: %I A169593 %S A169593 1,1,1,1,1,1,2,1,2,1,6,4,9,6,1,24,121,264,166,24,1,120,44616, %T A169593 93340,52950,4345,120,1,720,296321796,605003244,321204409,12686988, %U A169593 164746,720,1,5040,49349521382400,99624831647040,51206316902496 %V A169593 -1,1,-1,1,-1,1,2,-1,2,-1,6,-4,9,-6,1,24,-121,264,-166,24,-1,120,-44616, %W A169593 93340,-52950,4345,-120,1,720,-296321796,605003244,-321204409,12686988, %X A169593 -164746,720,-1,5040,-49349521382400,99624831647040,-51206316902496 %N A169593 Coefficients of characteristic polynomials of determinant equals trace matrices using Eulerian trace and factorial determinant. %C A169593 Row sums are: %C A169593 {-1, 0, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,...}. %C A169593 Traces are: %C A169593 Table[Sum[M[n][[k, k]], {k, 1, n}], {n, 1, 10}] %C A169593 {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,...} %C A169593 Determinants are: %C A169593 Table[Det[M[n]], {n, 1, 10}] %C A169593 {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,...} %e A169593{-1}, %e A169593 {1, -1}, %e A169593 {1, -1, 1}, %e A169593 {2, -1, 2, - 1}, %e A169593 {6, -4, 9, -6, 1}, %e A169593 {24, -121, 264, -166, 24, -1}, %e A169593 {120, -44616, 93340, -52950, 4345, -120, 1}, %e A169593 {720, -296321796, 605003244, -321204409, 12686988, -164746, 720, -1}, %e A169593 {5040, -49349521382400, 99624831647040, -51206316902496, 936232732785, -5234439280, 8349390, -5040, 1}, %e A169593 {40320, -274297679317746753201, 550979304410032093440, -279071418382631643820, 2395643740989790080, -5853386029582998, 2935936463360, -550407180, 40320, -1}, %e A169593 {362880, -65390418299618584017607843840, 131052209744019041903924775936, -65933467896655077725833452000, 271979805136698554372590800, -303398293776695489224080, 45414063262861346088, -2365327872234750, 45644404725, -362880, 1} %t A169593 Clear[M, n, m, k, a0, b] %t A169593 (*Eulerian number expansion*) %t A169593 p[t_] = (1 - x)/(1 - x*Exp[t*(1 - x)]) %t A169593 b = Table[ CoefficientList[ FullSimplify[ ExpandAll[(n!/ x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]], x], {n, 1, 10}] %t A169593 (* using the Eulerian numbers down the main diagonal since their sum is a factorial*) %t A169593 M[n_] := Table[If[ k == m && m < n, b[[n - 1]][[ k]], If[k == m + 1, 1, If[k == 1 && m == n, (-1)^(n + 1)*( n - 1)!, 0]]], {k, n}, {m, n}] %t A169593 TableForm[Table[M[n], {n, 1, 10}]] %t A169593 Table[Det[M[n]], {n, 1, 10}] %t A169593 Table[Sum[M[n][[k, k]], {k, 1, n}], {n, 1, 10}] %t A169593 a = Join[{{-1}}, Table[CoefficientList[CharacteristicPolynomial[M[n], x], x], {n, 1, 10}]] %t A169593 Flatten[a] %K A169593 sign %O A169593 0,7 %A A169593 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Dec 02 2009 So I haven't yet any general form for the determinant equals trace problem, I have developed a new matrix type that is useful. -- Respectfully, Roger L. Bagula 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : http://www.google.com/profiles/Roger.Bagula alternative email: roger.bagula at gmail.com