generalization of Bernoulli numbers to Pascal types
- To: mathgroup at smc.vnet.net
- Subject: [mg95087] generalization of Bernoulli numbers to Pascal types
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Tue, 6 Jan 2009 04:10:04 -0500 (EST)
Here is a new way to use the exponential like expansions to get a generalized Bernoulli number B(n,m): ( I thought of these about a week ago, but just got around to getting Mathematica to give me an expansion) I tried the (2*n-1)!! version but Mathematica failed on it. Here is the code if anyone can get it to work: Clear[p] Table[(2*n - 1)!!, {n, 0, 10}] p[x] = FullSimplify[1/Sum[x^(n - 1)/(2*n - 1)!!, {n, 1, Infinity}]] Table[ SeriesCoefficient[ Series[p[x], {x, 0, 30}], n], {n, 0, 30}] %I A154242 %S A154242 1,3,45,1890,56700,748440,10216206000,8756748000,2841962760000, %T A154242 24946749107280000,8232427205402400000,103279541304139200000, %U A154242 3101484625363300176000000,1431454442475369312000000 %N A154242 Bernoulli like expansion of polynomials: 1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]=2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2]). denominators of the rational sequence. %C A154242 The row sum sequences of the Pascal types are: %C A154242 row(n,m)={2^n,n!,2^n*n!,(2*n-1)!!,(2*n)!/n!}. Each one can be expanded as a Bernoulli like: %C A154242 f(x)=x/(Sum[x^n/Row(n,m),{n,0,Infinity}]-1)=Sum[B[n,m]*x^n/n!,{n,0,Infinity}]; %C A154242 Here the m=4. %F A154242 a(n)=Denominator[Expansion[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]=2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2])]]. %t A154242 Clear[p]; p[x] = FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]]; %t A154242 Table[ Denominator[SeriesCoefficient[Series[p[x], {x, 0, 30}], n]], {n, 0, 30}] %K A154242 nonn %O A154242 0,2 %A A154242 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jan 05 2009 %I A154243 %S A154243 2,1,1,1,1,1,23,23,157,97051,1614583,331691,1418383997,5720927, %T A154243 1868325937,1207461869239,118209298450003,3069893653, %U A154243 14303719087308533,65108016166881997,310766859240153209819 %V A154243 2,-1,1,-1,-1,1,23,-23,157,97051,-1614583,-331691,1418383997,-5720927, %W A154243 -1868325937,1207461869239,118209298450003,-3069893653, %X A154243 -14303719087308533,65108016166881997,-310766859240153209819 %N A154243 Bernoulli like expansion of polynomials: 1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]=2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2]). numerators of the rational sequence. %C A154243 The row sum sequences of the Pascal types are: %C A154243 row(n,m)={2^n,n!,2^n*n!,(2*n-1)!!,(2*n)!/n!}. Each one can be expanded as a Bernoulli like: %C A154243 f(x)=x/(Sum[x^n/Row(n,m),{n,0,Infinity}]-1)=Sum[B[n,m]*x^n/n!,{n,0,Infinity}]; %C A154243 Here the m=4. %F A154243 a(n)=Numerator[Expansion[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]->2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2])]]. %t A154243 Clear[p]; p[x] = FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), {n, 1, Infinity}]]; %t A154243 Table[ Numerator[SeriesCoefficient[Series[p[x], {x, 0, 30}], n]], {n, 0, 30}] %K A154243 sign %O A154243 0,1 %A A154243 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jan 05 2009 -- Respectfully, Roger L. Bagula 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html alternative email: rlbagula at sbcglobal.net