Re: generalization of Bernoulli numbers to Pascal types
- To: mathgroup at smc.vnet.net
- Subject: [mg95131] Re: [mg95087] generalization of Bernoulli numbers to Pascal types
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Wed, 7 Jan 2009 04:11:16 -0500 (EST)
- Reply-to: hanlonr at cox.net
You need to use a pattern in the definition of p p[x_] = 1/Sum[x^(n - 1)/(2*n - 1)!!, {n, 1, Infinity}] (Sqrt[2/Pi]*Sqrt[x])/ (E^(x/2)*Erf[Sqrt[x]/Sqrt[2]]) You don't need to use both Series and SeriesCoefficient (I only show a few terms) m = 5; Table[SeriesCoefficient[p[x], {x, 0, n}], {n, 0, m}] {1, -(1/3), 2/45, -(2/945), -(2/14175), 2/93555} Or more simply, CoefficientList[Series[p[x], {x, 0, m}], x] {1, -(1/3), 2/45, -(2/945), -(2/14175), 2/93555} Bob Hanlon On Tue, Jan 6, 2009 at 7:42 AM , Roger Bagula wrote: > Here is a new way to use the exponential like > expansions to get a generalized Bernoulli number B(n,m): > ( I thought of these about a week ago, but just got around to getting > Mathematica to give me an expansion) > I tried the (2*n-1)!! version but Mathematica failed on it. > Here is the code if anyone can get it to work: > Clear[p] > Table[(2*n - 1)!!, {n, 0, 10}] > p[x] = FullSimplify[1/Sum[x^(n - 1)/(2*n - 1)!!, {n, 1, Infinity}]] > Table[ SeriesCoefficient[ > Series[p[x], {x, 0, 30}], n], {n, 0, 30}] > > > %I A154242 > %S A154242 > 1,3,45,1890,56700,748440,10216206000,8756748000,2841962760000, > %T A154242 > 24946749107280000,8232427205402400000,103279541304139200000, > %U A154242 3101484625363300176000000,1431454442475369312000000 > %N A154242 Bernoulli like expansion of polynomials: 1/Sum[x^(n - > 1)/((2*n)!/n!), {n, 1, Infinity}]=2* Exp[-x/4] > *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2]). denominators of the rational > sequence. > %C A154242 The row sum sequences of the Pascal types are: > %C A154242 row(n,m)={2^n,n!,2^n*n!,(2*n-1)!!,(2*n)!/n!}. Each one can > be expanded as a Bernoulli like: > %C A154242 > f(x)=x/(Sum[x^n/Row(n,m),{n,0,Infinity}]-1)=Sum[B[n,m]*x^n/n!,{n,0,Infinity}]; > %C A154242 Here the m=4. > %F A154242 a(n)=Denominator[Expansion[1/Sum[x^(n - 1)/((2*n)!/n!), {n, > 1, Infinity}]=2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2])]]. > %t A154242 Clear[p]; p[x] = FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), > {n, 1, Infinity}]]; > %t A154242 Table[ Denominator[SeriesCoefficient[Series[p[x], {x, 0, > 30}], n]], {n, 0, 30}] > %K A154242 nonn > %O A154242 0,2 > %A A154242 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jan 05 2009 > > > %I A154243 > %S A154243 > 2,1,1,1,1,1,23,23,157,97051,1614583,331691,1418383997,5720927, > %T A154243 1868325937,1207461869239,118209298450003,3069893653, > %U A154243 14303719087308533,65108016166881997,310766859240153209819 > %V A154243 > 2,-1,1,-1,-1,1,23,-23,157,97051,-1614583,-331691,1418383997,-5720927, > %W A154243 -1868325937,1207461869239,118209298450003,-3069893653, > %X A154243 -14303719087308533,65108016166881997,-310766859240153209819 > %N A154243 Bernoulli like expansion of polynomials: 1/Sum[x^(n - > 1)/((2*n)!/n!), {n, 1, Infinity}]=2* Exp[-x/4] > *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2]). numerators of the rational > sequence. > %C A154243 The row sum sequences of the Pascal types are: > %C A154243 row(n,m)={2^n,n!,2^n*n!,(2*n-1)!!,(2*n)!/n!}. Each one can > be expanded as a Bernoulli like: > %C A154243 > f(x)=x/(Sum[x^n/Row(n,m),{n,0,Infinity}]-1)=Sum[B[n,m]*x^n/n!,{n,0,Infinity}]; > %C A154243 Here the m=4. > %F A154243 a(n)=Numerator[Expansion[1/Sum[x^(n - 1)/((2*n)!/n!), {n, > 1, Infinity}]->2* Exp[-x/4] *Sqrt[x]/(Sqrt[Pi]*Erf[Sqrt[x]/2])]]. > %t A154243 Clear[p]; p[x] = FullSimplify[1/Sum[x^(n - 1)/((2*n)!/n!), > {n, 1, Infinity}]]; > %t A154243 Table[ Numerator[SeriesCoefficient[Series[p[x], {x, 0, > 30}], n]], {n, 0, 30}] > %K A154243 sign > %O A154243 0,1 > %A A154243 Roger L. Bagula (rlbagulatftn(AT)yahoo.com), Jan 05 2009 > > > > > -- > Respectfully, Roger L. Bagula > 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 > :http://www.geocities.com/rlbagulatftn/Index.html > alternative email: rlbagula at sbcglobal.net