Re: Re: Re: Significant slow-down with

• To: mathgroup at smc.vnet.net
• Subject: [mg95980] Re: [mg95955] Re: [mg95913] Re: [mg95826] Significant slow-down with
• From: peter <plindsay.0 at gmail.com>
• Date: Sat, 31 Jan 2009 01:15:00 -0500 (EST)
• References: <200901291059.FAA18289@smc.vnet.net>

```exactly same results on macbook 2GHz
Peter

2009/1/30 van der Burgt, Maarten <Maarten.VanDerBurgt at icos.be>:
> The difference is enormous on my system (laptop Vista Centrino dual core
> 2.4GHz):
>
> Timing[RootReduce[x, Method -> "Recursive"]]
> {0.297, Root[-2769706384 - 370035819 #1^2 + 324 #1^4 &, 2]}
>
> Timing[RootReduce[x, Method -> "NumberField"]]
> {991.885, Root[-2769706384 - 370035819 #1^2 + 324 #1^4 &, 2]}
>
>
> Best regards,
>
> Maarten van der Burgt
>
> -----Original Message-----
> Sent: Thursday, 29 January, 2009 12:00
> To: mathgroup at smc.vnet.net
> Subject: [mg95955] [mg95913] Re: [mg95826] Significant slow-down with Mathematica
> 7 (vs 6).
>
> In Mathematica 7 RootReduce has a choice of two methods.
>
> Method->"Recursive" recursively performs algebraic number arithmetic,
> in a very similar way to what Mathematica 6 RootReduce was doing
>
> Method->"NumberField" first converts algebraic numbers in the input
> to AlgebraicNumber objects with the same generator and then performs
> the arithmetic within the algebraic number field.
>
> For each of the two methods there are examples where the method
> is significantly (by more than a factor of 1000) faster than
> the other one. With the default setting Method->Automatic, RootReduce
> attempts to heuristically pick the faster method. Unfortunately,
> there is no way to tell a priori which method will be faster and
> for some examples the heuristic makes the wrong choice.
>
> For your example the automatic method selection picks the "NumberField"
> method, but the "Recursive" method is much faster.
>
> In[3]:= RootReduce[x, Method->"Recursive"]//Timing
>
>                                                  2         4
> Out[3]= {1.36009, Root[-2769706384 - 370035819 #1  + 324 #1  & , 2]}
>
> For comparison, Mathematica 6 run on the same machine gives
>
> In[3]:= RootReduce[x]//Timing
>
>                                                  2         4
> Out[3]= {2.85218, Root[-2769706384 - 370035819 #1  + 324 #1  & , 2]}
>
> so Mathematica 7, with the "Recursive" method is even somewhat faster
> than Mathematica 6.
>
> If you see that Mathematica 7 RootReduce is slower than Mathematica 6
> on a significant portion of examples that appear in your calculations,
> you should probably use SetOptions[RootReduce, Method->"Recursive"].
>
> I would be grateful if you could send me a few more of the examples,
> so that I could use them to better tune the automatic method selection.
>
> Best Regards,
>
> Wolfram Research
>
> Scott Morrison wrote:
>  > I use RootReduce extremely heavily (subfactor/planar algebra
>  > calculations). I've recently discovered that in many cases RootReduce
>  > in Mathematica 7 runs significantly slower than in Mathematica 6. (Of
>
> course, I've
>  > checked on the same machine.)
>  >
>  > As an example, try RootReduce[x] with
>  >
>  > x =
>  > (Sqrt[(-1 + Sqrt[17])*(1 + Sqrt[17])]*
>  >       Root[-2 - 3*#1^2 + #1^4 & , 2, 0]*
>  >       Root[128 - 8055*#1^2 + 81*#1^4 & , 4, 0])/
>  >     2 + (Sqrt[
>  >        5 + Sqrt[17]]*(Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-32 - 5*#1^2 + #1^4 & , 2, 0]*
>  >          Root[32768 - 78588*#1^2 + 81*#1^4 & , 4, 0] -
>  >         2*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-16384 - 36144*#1^2 + 81*#1^4 & , 1, 0] +
>  >         Sqrt[2*(5 - Sqrt[17])]*Root[-2 - 3*#1^2 + #1^4 & , 2, 0]*
>  >          Root[128 - 8055*#1^2 + 81*#1^4 & , 4, 0]))/
>  >     2 + (Sqrt[
>  >        5 + Sqrt[17]]*(4*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-32 - 5*#1^2 + #1^4 & , 2, 0]*
>  >          Root[32768 - 78588*#1^2 + 81*#1^4 & , 4, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[32 - 23*#1^2 + 4*#1^4 & , 1,
> 0]*
>  >          Root[-8192 - 30645*#1^2 + 81*#1^4 & , 1, 0] +
>  >         9*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-16384 - 13347*#1^2 + 81*#1^4 & , 2, 0] -
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-16384 - 13347*#1^2 + 81*#1^4 & , 2, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[-8 + 11*#1^2 + #1^4 & , 1, 0]*
>  >          Root[8192 - 6300*#1^2 + 81*#1^4 & , 1, 0] +
>  >         Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-1024 - 5499*#1^2 + 81*#1^4 & , 2, 0] -
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-1024 - 5499*#1^2 + 81*#1^4 & , 2, 0]))/
>  >     8 + (Sqrt[
>  >        5 + Sqrt[17]]*(38*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-4 + #1^2 + #1^4 & , 2, 0] +
>  >         10*Sqrt[34*(5 - Sqrt[17])]*Root[-4 + #1^2 + #1^4 & , 2, 0] -
>  >         12*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-16384 - 36144*#1^2 + 81*#1^4 & , 1, 0] +
>  >         6*Sqrt[2*(5 - Sqrt[17])]*Root[-8 + 11*#1^2 + #1^4 & , 1, 0]*
>  >          Root[8192 - 6300*#1^2 + 81*#1^4 & , 1, 0] -
>  >         9*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-4096 - 2736*#1^2 + 81*#1^4 & , 2, 0] +
>  >         3*Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-4096 - 2736*#1^2 + 81*#1^4 & , 2, 0] +
>  >         6*Sqrt[2*(5 - Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 2, 0]*
>  >          Root[512 - 2556*#1^2 + 81*#1^4 & , 1, 0]))/
>  >     12 + (Sqrt[
>  >        5 + Sqrt[17]]*(Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-16 - 251*#1^2 + 4*#1^4 & , 1, 0] +
>  >         2*Sqrt[2*(5 - Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 1, 0]*
>  >          Root[512 - 2556*#1^2 + 81*#1^4 & , 4, 0]))/
>  >     4 + (Sqrt[
>  >        5 + Sqrt[17]]*(2*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-1 + 3*#1^2 + 2*#1^4 & , 1, 0]*
>  >          Root[512 - 2556*#1^2 + 81*#1^4 & , 4, 0] -
>  >         3*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-256 - 684*#1^2 + 81*#1^4 & , 1, 0] +
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-256 - 684*#1^2 + 81*#1^4 & , 1, 0]))/
>  >     4 + (Sqrt[(-1 + Sqrt[17])*(1 + Sqrt[17])]*
>  >       Root[-1 + 3*#1^2 + 2*#1^4 & , 1, 0]*
>  >       Root[32 - 639*#1^2 + 81*#1^4 & , 1, 0])/
>  >     2 + (Sqrt[
>  >        5 + Sqrt[17]]*(2*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-8 + 11*#1^2 + #1^4 & , 1, 0]*
>  >          Root[8192 - 6300*#1^2 + 81*#1^4 & , 1, 0] -
>  >         3*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-4096 - 2736*#1^2 + 81*#1^4 & , 2, 0] +
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-4096 - 2736*#1^2 + 81*#1^4 & , 2, 0] +
>  >         2*Sqrt[2*(5 - Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 1, 0]*
>  >          Root[32 - 639*#1^2 + 81*#1^4 & , 1, 0]))/
>  >     4 + (Sqrt[(-1 + Sqrt[17])*(1 + Sqrt[17])]*
>  >       Root[2 - 7*#1^2 + 4*#1^4 & , 1, 0]*
>  >       Root[-128 - 12573*#1^2 + 324*#1^4 & , 1, 0])/
>  >     2 + (Sqrt[
>  >        5 + Sqrt[17]]*(19*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-4 + #1^2 + #1^4 & , 2, 0] +
>  >         5*Sqrt[34*(5 - Sqrt[17])]*Root[-4 + #1^2 + #1^4 & , 2, 0] +
>  >         3*Sqrt[2*(5 - Sqrt[17])]*Root[32 - 23*#1^2 + 4*#1^4 & , 1,
> 0]*
>  >          Root[-8192 - 30645*#1^2 + 81*#1^4 & , 1, 0] +
>  >         3*Sqrt[2*(5 - Sqrt[17])]*Root[2 - 7*#1^2 + 4*#1^4 & , 1, 0]*
>  >          Root[-128 - 12573*#1^2 + 324*#1^4 & , 1, 0]))/
>  >     6 + ((-1 + Sqrt[17])^(3/2)*Sqrt[1 + Sqrt[17]]*
>  >       Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0])/
>  >     8 + (Sqrt[
>  >        5 + Sqrt[17]]*(9*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-16384 - 13347*#1^2 + 81*#1^4 & , 2, 0] -
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-16384 - 13347*#1^2 + 81*#1^4 & , 2, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[-8 + 11*#1^2 + #1^4 & , 1, 0]*
>  >          Root[8192 - 6300*#1^2 + 81*#1^4 & , 1, 0] -
>  >         Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0] +
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0]))/
>  >     8 + (Sqrt[
>  >        5 + Sqrt[17]]*(4*Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-2 - 3*#1^2 + #1^4 & , 2, 0]*
>  >          Root[128 - 8055*#1^2 + 81*#1^4 & , 4, 0] +
>  >         Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-1024 - 5499*#1^2 + 81*#1^4 & , 2, 0] -
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-1024 - 5499*#1^2 + 81*#1^4 & , 2, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 2, 0]*
>  >          Root[512 - 2556*#1^2 + 81*#1^4 & , 1, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 1, 0]*
>  >          Root[32 - 639*#1^2 + 81*#1^4 & , 1, 0] +
>  >         4*Sqrt[2*(5 - Sqrt[17])]*Root[2 - 7*#1^2 + 4*#1^4 & , 1, 0]*
>  >          Root[-128 - 12573*#1^2 + 324*#1^4 & , 1, 0] -
>  >         Sqrt[2*(5 - Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0] +
>  >         Sqrt[34*(5 - Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0]))/
>  >     8 + (Sqrt[(1 + Sqrt[17])/
>  >         2]*(4*Sqrt[2*(-1 + Sqrt[17])]*
>  >          Root[-2 - 3*#1^2 + #1^4 & , 2, 0]*
>  >          Root[128 - 8055*#1^2 + 81*#1^4 & , 4, 0] +
>  >         4*Sqrt[2*(-1 + Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 1,
> 0]*
>  >          Root[32 - 639*#1^2 + 81*#1^4 & , 1, 0] +
>  >         4*Sqrt[2*(-1 + Sqrt[17])]*Root[-1 + 3*#1^2 + 2*#1^4 & , 2,
> 0]*
>  >          Root[32 - 639*#1^2 + 81*#1^4 & , 4, 0] +
>  >         4*Sqrt[2*(-1 + Sqrt[17])]*Root[2 - 7*#1^2 + 4*#1^4 & , 1, 0]*
>  >          Root[-128 - 12573*#1^2 + 324*#1^4 & , 1, 0] -
>  >         Sqrt[2*(-1 + Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0] +
>  >         Sqrt[34*(-1 + Sqrt[17])]*
>  >          Root[-256 - 5499*#1^2 + 324*#1^4 & , 2, 0]))/8;
>  >
>  > this runs in <2s in Mathematica 6 on my machine, and >30s in
> Mathematica7.
>  > I have other examples where the difference is even worse.
>  >
>  > Thanks,
>  > Scott Morrison
>
>
>
>

```

• Prev by Date: Re: Re: Simplifying and Rearranging Expressions
• Next by Date: Lower Bound on Parameters in NonlinearFit, Mathematica 5.2
• Previous by thread: Re: Re: Significant slow-down with Mathematica
• Next by thread: parasite points with Mesh