kiss ellipses
- To: mathgroup at smc.vnet.net
- Subject: [mg101396] kiss ellipses
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 4 Jul 2009 06:45:15 -0400 (EDT)
- References: <h2fe37$ppu$1@smc.vnet.net> <h2kjf0$imr$1@smc.vnet.net>
http://www.flickr.com/photos/fractalmusic/3684969722/ A third elliptical fractal tiling type: the ellipse kisses the previous scale and is rotated slightly. Mathematica: Clear[f, dlst, pt, cr, ptlst, x, y] dlst = Table[ Random[Integer, {1, 3}], {n, 100000}]; f[1, {x_, y_}] := N[ {2*x*y/(x2 + y2) , (y2 - x2)/(y2 + x2)}]; f[2, {x_, y_}] := N[ {(2*x - y)/(2.83), (2*x + y)/(2.83)}]; f[3, {x_, y_}] := N[ {-(y2 - x2)/(y2 + x2), 2*x*y/(x2 + y2) }]; pt = {0.5, 0.75}; cr[n_] := If[n - 1 == 0, RGBColor[0, 0, 1], If[n - 2 == 0, RGBColor[0, 1, 0], If[ n - 3 == 0, RGBColor[1, 0, 0], RGBColor[0, 0, 0]]]] ptlst = Table[{cr[dlst[[j]]], Point[pt = f[dlst[[j]], Sequence[pt]]]}, {j, Length[dlst]}]; Show[Graphics[Join[{PointSize[.001]}, ptlst]], AspectRatio -> Automatic, PlotRange -> All]