eyeofra_ifs.gif (GIF Image, 1044x1044 pixels) - Scaled (87%)
- To: mathgroup at smc.vnet.net
- Subject: [mg101388] eyeofra_ifs.gif (GIF Image, 1044x1044 pixels) - Scaled (87%)
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sat, 4 Jul 2009 06:43:42 -0400 (EDT)
- References: <h2fe37$ppu$1@smc.vnet.net> <h2kjf0$imr$1@smc.vnet.net>
http://www.geocities.com/rlbagulatftn/eyeofra_ifs.gif The Eye of Ra fractal by doing an affine inside the kiss ellipse with reduced the number of transforms in Mathematica: Clear[f, dlst, pt, cr, ptlst, x, y] RandomSeed[]; dlst = Table[ Random[Integer, {1, 2}], {n, 100000}]; f[1, {x_, y_}] := N[ {2*x*y/(x^2 + y^2) , (y^2 - x^2)/(y^2 + x^2)}]; f[2, {x_, y_}] := N[ {(2*((x - y)/ Sqrt[2]) - (x + y)/Sqrt[2])/( 2.83), (2*((x - y)/Sqrt[2]) + (x + y)/Sqrt[2])/(2.83)}]; pt = {0.5, 0.75}; cr[n_] := If[n - 2 == 0, RGBColor[ 0, 0, 1], If[n - 3 == 0, RGBColor[0, 1, 0], If[n - 1 == 0, RGBColor[1, 0, 0], RGBColor[0, 0, 0]]]] ptlst = Table[{cr[dlst[[j]]], Point[pt = f[dlst[[j]], Sequence[pt]]]}, {j, Length[dlst]}]; Show[Graphics[Join[{PointSize[.001]}, ptlst]], AspectRatio -> Automatic, PlotRange -> All]