MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

a graph problem-> heptagon analog to the dodecahedron

  • To: mathgroup at smc.vnet.net
  • Subject: [mg100652] a graph problem-> heptagon analog to the dodecahedron
  • From: Roger Bagula <rlbagula at sbcglobal.net>
  • Date: Wed, 10 Jun 2009 05:35:06 -0400 (EDT)

The construction of an two heptagon 28 vertex
graph using an adjacency matrix isn't easy.
The problem I had was getting all the errors out.
The true answer is:
http://www.geocities.com/rlbagulatftn/m28_7_14_7_rt3d.gif

Edges=42
Vertices=28
Faces=16
In my original effort
I had not one, but two mistakes in the adjacency matrix.
So I present it as a problem for solution
( the almost adjacency matrix) find the errors:
Mathematica:

m28 = {{0, 1,
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}, {0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}, {0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0}, {0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}, {1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0}, {1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
0}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {0,
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0,
0, 0, 1}, {0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1}, {0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 1}, {0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
0}, {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1,
0}}
CharacteristicPolynomial[m28, x]
NSolve[CharacteristicPolynomial[m28, x] == 0, x]
GraphPlot3D[m28]
g = FromAdjacencyMatrix[m28]
ShowGraph[Contract[FromAdjacencyMatrix[m28], {8, 21}]]
ShowGraph[RankedEmbedding[FromAdjacencyMatrix[m28], {28}]]
ShowGraph[SpringEmbedding[FromAdjacencyMatrix[m28]]]
ShowGraph[LineGraph[FromAdjacencyMatrix[m28]]]
ShowGraph[OrientGraph[FromAdjacencyMatrix[m28]]]
ShowGraph[FromAdjacencyMatrix[m28]]
EdgeConnectivity[FromAdjacencyMatrix[m28]]
3
BipartiteMatching[FromAdjacencyMatrix[m28]]
BipartiteMatching["â??Graph:<"\[InvisibleSpace]43\[InvisibleSpace]", "\
\[InvisibleSpace]28\[InvisibleSpace]", "\[InvisibleSpace]"Undirected"\
\[InvisibleSpace]">â??"]
M[FromAdjacencyMatrix[m28]]
43
V[FromAdjacencyMatrix[m28]]
28
M[FromAdjacencyMatrix[m28]] - V[FromAdjacencyMatrix[m28]] + 2
17


  • Prev by Date: Re: Re: Polygon Union
  • Next by Date: Generic nested menus implementation
  • Previous by thread: Re: Slow/jerky animations inside manipulate (more details)
  • Next by thread: Re: a graph problem-> heptagon analog to the dodecahedron