MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: a graph problem-> heptagon analog to the dodecahedron

  • To: mathgroup at smc.vnet.net
  • Subject: [mg100822] Re: a graph problem-> heptagon analog to the dodecahedron
  • From: Roger Bagula <rlbagula at sbcglobal.net>
  • Date: Sun, 14 Jun 2009 21:22:09 -0400 (EDT)
  • References: <h0nuns$bgp$1@smc.vnet.net>

http://www.flickr.com/photos/fractalmusic/sets/72157619727734302/
Mathematica:
<< DiscreteMath`GraphPlot`;
<< DiscreteMath`ComputationalGeometry`
<< DiscreteMath`Combinatorica`

m28 = {{0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, \
0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 1,
0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0}, {0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0}, {0, 0, 0, 0, 1, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0}, {1, 0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0}, {0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {0, 0,
1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {
0, 0, 0, 1, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0}, {
0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {
0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {
0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0}, {0, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}, {0, 0, 0, 0, 0, 0, 0, \
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0}, {0, 0, 
0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0}, {0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1}, {0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0}}
CharacteristicPolynomial[m28, x]
NSolve[CharacteristicPolynomial[m28, x] == 0, x]
GraphPlot3D[m28]
g = FromAdjacencyMatrix[m28]
"â??Graph:<"\[InvisibleSpace]42\[InvisibleSpace]",
"\[InvisibleSpace]28\[InvisibleSpace]", "\[InvisibleSpace]"
Undirected"\[InvisibleSpace]">â??"
ShowGraph[Contract[FromAdjacencyMatrix[m28], {8, 21}]]
ShowGraph[RankedEmbedding[FromAdjacencyMatrix[m28], {28}]]
ShowGraph[SpringEmbedding[FromAdjacencyMatrix[m28]]]
ShowGraph[LineGraph[FromAdjacencyMatrix[m28]]]
ShowGraph[OrientGraph[FromAdjacencyMatrix[m28]]]
ShowGraph[FromAdjacencyMatrix[m28]]
â??Graphicsâ??
EdgeConnectivity[FromAdjacencyMatrix[m28]]
3
M[FromAdjacencyMatrix[m28]]
42
V[FromAdjacencyMatrix[m28]]
28
M[FromAdjacencyMatrix[m28]] - V[FromAdjacencyMatrix[m28]] + 2
16


  • Prev by Date: Re: Re: ParallelTable[ ]
  • Next by Date: Re: Re: Re: Re: Presentation quick with
  • Previous by thread: a graph problem-> heptagon analog to the dodecahedron
  • Next by thread: Generic nested menus implementation