Re: ContourPlot3D and NIntegrate
- To: mathgroup at smc.vnet.net
- Subject: [mg100989] Re: ContourPlot3D and NIntegrate
- From: antononcube <antononcube at gmail.com>
- Date: Fri, 19 Jun 2009 20:47:02 -0400 (EDT)
- References: <h0bu15$8lu$1@smc.vnet.net>
Hi, If you use the following defintion VV[x_?NumericQ, y_?NumericQ, z_?NumericQ] := Module[{u, phi}, NIntegrate[(x^2 + y^2 + z^2)^(-3)*u*phi, {u, 0, 1}, {phi, 0, 2 Pi}, Method -> {Automatic, SymbolicProcessing -> 0}, PrecisionGoal -> 6]] then the plot computation ContourPlot3D[ VV[x, y, z], {x, 1, 2}, {y, 1, 2}, {z, 1, 2}] // AbsoluteTiming takes 44 seconds on my 2 year old MacBook Pro Note that I have put the symbolic processing time to zero. You can further see if using smaller precision gives satisfactory and faster results for you. Anton Antonov On Jun 5, 4:09 pm, Henning Heiberg-Andersen <henning.heibergander... at gmail.com> wrote: > Hi, > > I don't understand what goes wrong in this sequence: > > * > > In[1]:=VV[x_,y_,z_]:= > > Module[{u,phi},NIntegrate[(x^2+y^2+z^2)^(-3)*u*phi,{u,0,1},{phi,0,2Pi}] > > ] > > In[2]:= > > ContourPlot3D[VV[x,y,z],{x,1,2},{y,1,2},{z,1,2}], > > AND THEN: > > NIntegrate::inumr: The integrand \[NoBreak](phi$12637167 > u$12637167)/(x^2+y^2+z^2)3\[NoBreak] has evaluated to non-numerical value= s > for all sampling points in the region with boundaries > \[NoBreak]{{0,1},{0,6.28319}}\[NoBreak]. > =87<http://reference.wolfram.com/mathematica/ref/message/NIntegrate/inu= mr...> > > Can anybody help? > > Sincerely, > > Henning Heiberg-Andersen