Mathematica 9 is now available
Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: interpolation and to extract between 3D plots

  • To: mathgroup at smc.vnet.net
  • Subject: [mg101242] Re: [mg101183] interpolation and to extract between 3D plots
  • From: Bob Hanlon <hanlonr at cox.net>
  • Date: Sat, 27 Jun 2009 06:06:48 -0400 (EDT)
  • Reply-to: hanlonr at cox.net

dtvalues = {{0.360374, 183.717, -659.}, {10.1899, 186.526, -659.}, {17.562, 
    193.898, -659.}, {20.0194, 203.376, -659.}, {17.562, 
    213.206, -659.}, {10.1899, 220.578, -659.}, {0.360374, 
    223.386, -659.}, {-9.46912, 220.578, -659.}, {-16.8412, 
    213.206, -659.}, {-19.2986, 203.376, -659.}, {-16.8412, 
    193.898, -659.}, {-9.46912, 186.526, -659.}, {0.360374, 
    183.717, -660.5}, {10.1899, 186.526, -660.5}, {17.562, 
    193.898, -660.5}, {20.0194, 203.376, -660.5}, {17.562, 
    213.206, -660.5}, {10.1899, 220.578, -660.5}, {0.360374, 
    223.386, -660.5}, {-9.46912, 220.578, -660.5}, {-16.8412, 
    213.206, -660.5}, {-19.2986, 203.376, -660.5}, {-16.8412, 
    193.898, -660.5}, {-9.46912, 186.526, -660.5}, {0.360374, 
    183.717, -662.}, {10.1899, 186.526, -662.}, {17.562, 
    193.898, -662.}, {20.0194, 203.376, -662.}, {17.562, 
    213.206, -662.}, {10.1899, 220.578, -662.}, {0.360374, 
    223.386, -662.}, {-9.46912, 220.578, -662.}, {-16.8412, 
    213.206, -662.}, {-19.2986, 203.376, -662.}, {-16.8412, 
    193.898, -662.}, {-9.46912, 186.526, -662.}};

To separate by z-values

sbz = SplitBy[dtvalues, #[[3]] &];

allZ = Union[dtvalues[[All, 3]]];

Reverse[sbz] ==
 (Cases[dtvalues, {__, #}] & /@ allZ)

True

Graphics3D[Line /@ sbz,
 Axes -> True,
 BoxRatios -> {1, 1, .5}]

To close each of the rings

Graphics3D[Line /@
  (Append[#, First[#]] & /@ sbz),
 Axes -> True,
 BoxRatios -> {1, 1, .5}]

To add additional rings

pts = Append[pts = Cases[dtvalues,
     {x_, y_, dtvalues[[1, 3]]} :> {x, y, z}],
   First[pts]];

multiRing = Table[pts,
   {z, Min[allZ], Max[allZ],
    (Max[allZ] - Min[allZ])/20}];

Graphics3D[Line /@ multiRing,
 Axes -> True,
 BoxRatios -> {1, 1, .5}]


Bob Hanlon

---- M <xrayspectrum at googlemail.com> wrote: 

=============
Hi All,

I have the following data in the form {x,y,z} ;

dtvalues= {{0.360374, 183.717, -659.}, {10.1899, 186.526, -659.},
{17.562, 193.898, -659.}, {20.0194, 203.376, -659.}, {17.562, 213.206,
-659.}, {10.1899, 220.578, -659.}, {0.360374, 223.386, -659.},
{-9.46912, 220.578, -659.}, {-16.8412, 213.206, -659.}, {-19.2986,
203.376, -659.}, {-16.8412, 193.898, -659.}, {-9.46912, 186.526,
-659.}, {0.360374, 183.717, -660.5}, {10.1899, 186.526, -660.5},
{17.562, 193.898, -660.5}, {20.0194, 203.376, -660.5}, {17.562,
213.206, -660.5}, {10.1899, 220.578, -660.5}, {0.360374, 223.386,
-660.5}, {-9.46912, 220.578, -660.5}, {-16.8412, 213.206, -660.5},
{-19.2986, 203.376, -660.5}, {-16.8412, 193.898, -660.5}, {-9.46912,
186.526, -660.5}, {0.360374, 183.717, -662.}, {10.1899, 186.526,
-662.}, {17.562, 193.898, -662.}, {20.0194, 203.376, -662.}, {17.562,
213.206, -662.}, {10.1899, 220.578, -662.}, {0.360374, 223.386,
-662.}, {-9.46912, 220.578, -662.}, {-16.8412, 213.206, -662.},
{-19.2986, 203.376, -662.}, {-16.8412, 193.898, -662.}, {-9.46912,
186.526, -662.}};

Two questions
1.) How to build a 3D volume for visualization for this data.
2.) Is it possible to extract the data at various z values like {z =
-659.095, -660, eetc.}

Thank you for your help !!!!



  • Prev by Date: Re: Re: Re: Take away the sliders
  • Next by Date: Re: laptop recommendation to run mathematica fast?
  • Previous by thread: Re: interpolation and to extract between 3D plots
  • Next by thread: Re: interpolation and to extract between 3D plots