Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: volume calculation

  • To: mathgroup at smc.vnet.net
  • Subject: [mg100255] Re: volume calculation
  • From: "andre.robin3" <andre.robin3 at wanadoo.fr>
  • Date: Fri, 29 May 2009 20:59:05 -0400 (EDT)
  • References: <gvn74b$ets$1@smc.vnet.net>

Use :

Integrate[ Boole[D(x1,x2,x3,...,xn) < L ],  {x1,x1min,x1max}
...{xn,xnMin,xnMax} ]

Try also:

- NIntegrate instead of Integrate
- Infinity (-Infinity) instead max boundaries (min boundaries)

it works fine symbolically and numericaly


"Filippo Miatto" <miatto at gmail.com> a écrit dans le message de news:
gvn74b$ets$1 at smc.vnet.net...
> Dear all,
> I need a way to find the volume of a multidimensional shape in the
> coordinates (x1,x2,x3,...,xn), that comes from an inequality like
> D(x1,x2,x3,...,xn) < L (with 3 variables i get a nice weird shape in
> R^3, with more i don't plot it)
> In other words I let Mathematica calculate where in the space of the
> solutions the inequality is solved and i'd like to have the numerical
> "volume of the solutions".
> What strategy should i use? The function D is not invertible...
> Thank you,
> Filippo
>
>
>
> ------------------------------------------------------------
> Mobile (IT): +39 340 6104269
> Mobile (NL): +31 064 3949827
> Home (IT): +39 0438 59360
>
> P.O. Box 9504
> NL 2300 RA LEIDEN
>
> msn: dr.ziofil at hotmail.com
> skype: filippo.miatto
> Quantum Optics
> Group Mail: miatto at molphys.leidenuniv.nl
>




  • Prev by Date: Re: volume calculation
  • Next by Date: Re: Parallel processing
  • Previous by thread: Re: volume calculation
  • Next by thread: "move cursor out of formula by one level"