Re: How do I get Mathematica to Simplify this to 1?
- To: mathgroup at smc.vnet.net
- Subject: [mg104478] Re: How do I get Mathematica to Simplify this to 1?
- From: Peter Breitfeld <phbrf at t-online.de>
- Date: Sun, 1 Nov 2009 04:02:58 -0500 (EST)
- References: <hcgpkt$egn$1@smc.vnet.net>
dushan wrote: > After initially declaring that {w>0, k>0, {z,X,Y} el Reals}, a matrix- > vector multiplication produces the vector > > {(X - w Cos[k z])/Sqrt[z^2 + (X - w Cos[k z])^2 + (Y - w Sin[k z])^2], > (Y - w Sin[k z])/Sqrt[z^2 + (X - w Cos[k z])^2 + (Y - w Sin[k z])^2], > -(z/Sqrt[ w^2 + X^2 + Y^2 + z^2 - 2 w X Cos[k z] - 2 w Y Sin[k z]])} > > The denominators are in fact identical. When I ask for Norm[%] I get > > \[Sqrt]( > Abs[z/Sqrt[w^2 + X^2 + Y^2 + z^2 - 2 w X Cos[k z] - 2 w Y Sin[k z]]] > ^2 + > Abs[(X - w Cos[k z])/Sqrt[z^2 + (X - w Cos[k z])^2 + (Y - w Sin[k z]) > ^2]]^2 + > Abs[(Y - w Sin[k z])/Sqrt[z^2 + (X - w Cos[k z])^2 + (Y - w Sin[k z]) > ^2]]^2 > ) > > and Simplify[%] reproduces this identical result instead of supplying > the correct answer 1. > > What am I doing wrong that prevents Mathematica from delivering the > right answer? > I'll name your expression expr. If you want to simplify with all variables supposed to be Reals, then use: Simplify[Norm[expr], Element[_, Reals]] Out= 1 > A separate question: Is there available somewhere a short list of > symbols (such as '!!', '&&', "=.", '/@', etc.) and their meanings? A > Mathematica book index would generally start with such a list, but > having it available as a 1-page crib-sheet would be very helpful to > newbies like me. > > Thanks. > > - Dushan > May be this little palette is a starter: CreatePalette[{ Grid[{ {" f @ x", "f[x]"}, {" x // f", "f[x]"}, {" x ~ f ~ y", "f[x, y]"}, {" f /@ x", "Map[f, x]"}, {" f //@ x", "MapAll[f, x]"}, {" f @@ x", "Apply[f, x]"}, {" f @@@ x", "Apply[f, x, {1}]"}, {" a && b", "And[a, b]"}, {" a \[And] b", "And[a, b]"}, {" a || b", "Or[a, b]"}, {" a \[Or] b", "Or[a, b]"}, {" ! a", "Not[a]"}, {" \[Not] a", "Not[a]"}, {" a \[Union] b", "Union[a, b]"}, {" a \[Intersection] b", "Intersection[a, b]"}, {" a <> b", "StringJoin[a, b]"}, {" a /. b", "ReplaceAll[a, b]"}, {" a //. b", "ReplaceRepeated[a, b] "}, {" a /; b", "Condition[a ,b]"}, {" a /: x=y", "TagSet[a, x, y]"}, {" a /: x:=y", "TagSetDelayed[a, x, y] "} }, Alignment -> Left, BaseStyle -> {FontFamily -> "Palatino", FontSize -> 12}, Dividers -> {False, {4 -> Black, 6 -> Black, 8 -> Black, 14 -> Black, 16 -> Black, 17 -> Black, 19 -> Black, 20 -> Black}} ] }] -- _________________________________________________________________ Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de