Re: Wrong Simplify[] Answer for Simplify[Cos[x]^4-Sin[x]^4]?
- To: mathgroup at smc.vnet.net
- Subject: [mg104513] Re: Wrong Simplify[] Answer for Simplify[Cos[x]^4-Sin[x]^4]?
- From: Lawrence Teo <lawrenceteo at yahoo.com>
- Date: Tue, 3 Nov 2009 02:51:06 -0500 (EST)
- References: <hce437$r4t$1@smc.vnet.net> <hcgmni$cpe$1@smc.vnet.net>
Hi all, Thanks for the insight. So Simplify[] in Mathematica is right. But why I observe small delta if I subtract the two expressions with // N? Is it because of machine precision related limitation? a = Cos[x]^2 - Sin[x]^2 b = Cos[x]^4 - Sin[x]^4 Table[a - b, {x, -10, 10}] // N Return small delta... \!\({6.938893903907228`*^-17, 6.245004513516506`*^-17, 0.`, 0.`, 7.025630077706069`*^-17, 0.`, 0.`, 3.854338723185968`*^-17, 0.`, 1.1102230246251565`*^-16, 0.`, 1.1102230246251565`*^-16, 0.`, \ 3.854338723185968`*^-17, 0.`, 0.`, 7.025630077706069`*^-17, 0.`, 0.`, \ 6.245004513516506`*^-17, 6.938893903907228`*^-17}\) On Oct 31, 2:50 pm, Peter Breitfeld <ph... at t-online.de> wrote: > Lawrence Teo wrote: > > We know that Simplify[Cos[x]^2-Sin[x]^2] -> Cos[2 x] > > But why Simplify[Cos[x]^4-Sin[x]^4] -> Cos[2 x] too? > > > Doing subtraction between the two expressions will give small delta. > > This is enough to prove that the two expression shouldn't be the same. > > > Can anyone give me any insight? Thanks. > > it's simply true, because: > > cos^4 x - sin^4 x = (cos^2 x - sin^2 x)(cos^2 x + sin^2 x) > = (cos^2 x - sin^2 x) * 1 = cos 2x > > -- > _________________________________________________________________ > Peter Breitfeld, Bad Saulgau, Germany --http://www.pBreitfeld.de