Re: Wrong limit?
- To: mathgroup at smc.vnet.net
- Subject: [mg104721] Re: Wrong limit?
- From: Peter Breitfeld <phbrf at t-online.de>
- Date: Sat, 7 Nov 2009 07:02:14 -0500 (EST)
- References: <hd0t8u$82a$1@smc.vnet.net>
wiso wrote: > Look at this: > > Limit[(x^2 - a^2)/(5 x^2 - 4 a x - a^2), x -> a] > Mathematica answer = 1/3 > > this is ok for a !=0, but if a = 0 the value is > > Limit[(x^2 - a^2)/(5 x^2 - 4 a x - a^2) /. a -> 0, x -> 0] > 1/5 > Limit returns a generic result, which is true except for some Values. If you want to get close tho the "strange" values try to expand your expression into a series: Series[(x^2 - a^2)/(5 x^2 - 4 a x - a^2), {x, a, 3}]//Normal Out= 1/3 - (-a + x)/(9*a) + (5*(-a + x)^2)/(54*a^2) - (25*(-a + x)^3)/(324*a^3) Now you can easily see, that for a=!0 the limit will be 1/3, but the case a=0 is special. -- _________________________________________________________________ Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de