Re: a[n],b[n]
- To: mathgroup at smc.vnet.net
- Subject: [mg104909] Re: [mg104889] a[n],b[n]
- From: Leonid Shifrin <lshifr at gmail.com>
- Date: Fri, 13 Nov 2009 05:53:08 -0500 (EST)
- References: <200911121107.GAA19027@smc.vnet.net>
Your coefficients represent a rotation matrix with the angle Pi/5. Therefore, the answers are: a[n] = 4 Cos[(n \[Pi])/5] - 9 Sin[(n \[Pi])/5] b[n] = 9 Cos[(n \[Pi])/5] + 4 Sin[(n \[Pi])/5], where I started counting from zero: a[0] = 4, b[0] = 9. Regards, Leonid On Thu, Nov 12, 2009 at 3:07 AM, ynb <wkfkh056 at yahoo.co.jp> wrote: > a[n + 1] = 1/4*(1 + Sqrt[5])*a[n] - 1/2*Sqrt[1/2*(5 - Sqrt[5])]*b[n], > b[n + 1] = 1/2*Sqrt[1/2*(5 - Sqrt[5])]*a[n] + 1/4*(1 + Sqrt[5])*b[n], > a[1] = 4, b[1] = 9. > > > a[n]= > b[n]= > >
- References:
- a[n],b[n]
- From: ynb <wkfkh056@yahoo.co.jp>
- a[n],b[n]