MathGroup Archive 2009

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Non-Linear pendulum

  • To: mathgroup at smc.vnet.net
  • Subject: [mg104934] Re: [mg104874] Non-Linear pendulum
  • From: "David Park" <djmpark at comcast.net>
  • Date: Fri, 13 Nov 2009 05:57:54 -0500 (EST)
  • References: <30949581.1258025181344.JavaMail.root@n11>

pendulum = {Line[{{0, 0}, {0, -1}}], Circle[{0, -1.3}, 0.3]};
l = 20;
g = 9.81;
Clear[\[Theta]];
s = First@
  NDSolve[{\[Theta]''[t] == -g/l Sin[\[Theta][t]], \[Theta][0] == 
     Pi/2, \[Theta]'[0] == 0}, \[Theta], {t, 0, 30}]
\[Theta][t_] = \[Theta][t] /. S

Animate[
 Graphics[Rotate[pendulum, \[Theta][t], {0, 0}],
  PlotRange -> {{-2, 2}, {-2, .5}}],
 {t, 0, 30},
 AnimationRunning -> False]


David Park
djmpark at comcast.net
http://home.comcast.net/~djmpark/  


From: Allamarein [mailto:matteo.diplomacy at gmail.com] 

I'm getting to know Mathematica. I want to compile a code to see the
non-linear pendulum behavior.

pendulum= {Line[{{0, 0}, {0, -1}}], Circle[{0, -1.3}, 0.3]};
l = 20;
g = 9.81;
s = NDSolve[
   { \[Theta]''[t] == -g /l Sin[\[Theta][t]],
    \[Theta][0] == Pi/2,
    \[Theta]'[0] == 0}, \[Theta],
   {t, 0, 30}];
Animate[
 Graphics[Rotate[pendulum, \[Theta[]t], {0, 0}],
  PlotRange -> {{-2, 2}, {0, -2}}],
 {t, 0, 30}, AnimationRunning -> False]

This code doesn't work. I realized my error is in Rotate argument. If
I change this line with:

Graphics[Rotate[pendulum, Sin[t], {0, 0}]

code runs, but it's not the result (obviously).
How can I correct my code, to see the pendulum oscillates with \[Theta]
[t] law?




  • Prev by Date: Re: Using For[] for Generating Multiple Output Cells
  • Next by Date: Re: a[n],b[n]
  • Previous by thread: Re: Non-Linear pendulum
  • Next by thread: Re: Non-Linear pendulum