Re: Non-Linear pendulum
- To: mathgroup at smc.vnet.net
- Subject: [mg104934] Re: [mg104874] Non-Linear pendulum
- From: "David Park" <djmpark at comcast.net>
- Date: Fri, 13 Nov 2009 05:57:54 -0500 (EST)
- References: <30949581.1258025181344.JavaMail.root@n11>
pendulum = {Line[{{0, 0}, {0, -1}}], Circle[{0, -1.3}, 0.3]}; l = 20; g = 9.81; Clear[\[Theta]]; s = First@ NDSolve[{\[Theta]''[t] == -g/l Sin[\[Theta][t]], \[Theta][0] == Pi/2, \[Theta]'[0] == 0}, \[Theta], {t, 0, 30}] \[Theta][t_] = \[Theta][t] /. S Animate[ Graphics[Rotate[pendulum, \[Theta][t], {0, 0}], PlotRange -> {{-2, 2}, {-2, .5}}], {t, 0, 30}, AnimationRunning -> False] David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ From: Allamarein [mailto:matteo.diplomacy at gmail.com] I'm getting to know Mathematica. I want to compile a code to see the non-linear pendulum behavior. pendulum= {Line[{{0, 0}, {0, -1}}], Circle[{0, -1.3}, 0.3]}; l = 20; g = 9.81; s = NDSolve[ { \[Theta]''[t] == -g /l Sin[\[Theta][t]], \[Theta][0] == Pi/2, \[Theta]'[0] == 0}, \[Theta], {t, 0, 30}]; Animate[ Graphics[Rotate[pendulum, \[Theta[]t], {0, 0}], PlotRange -> {{-2, 2}, {0, -2}}], {t, 0, 30}, AnimationRunning -> False] This code doesn't work. I realized my error is in Rotate argument. If I change this line with: Graphics[Rotate[pendulum, Sin[t], {0, 0}] code runs, but it's not the result (obviously). How can I correct my code, to see the pendulum oscillates with \[Theta] [t] law?