Re: a[n],b[n]
- To: mathgroup at smc.vnet.net
- Subject: [mg104916] Re: [mg104889] a[n],b[n]
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 13 Nov 2009 05:54:28 -0500 (EST)
- Reply-to: hanlonr at cox.net
Use RSolve RSolve[{ a[n + 1] == 1/4*(1 + Sqrt[5])*a[n] - 1/2*Sqrt[1/2*(5 - Sqrt[5])]*b[n], b[n + 1] == 1/2*Sqrt[1/2*(5 - Sqrt[5])]*a[n] + 1/4*(1 + Sqrt[5])*b[n], a[1] == 4, b[1] == 9}, {a[n], b[n]}, n] // Simplify {{a[n] -> (1/(1 + Sqrt[5]))*(2^(-(2*n) - 3)* ((4 + 9*I)*(6 + 2*Sqrt[5] - I*Sqrt[50 - 10*Sqrt[5]] - I*Sqrt[10 - 2*Sqrt[5]])*(1 + Sqrt[5] + I*Sqrt[10 - 2*Sqrt[5]])^n + (9 + 4*I)* (Sqrt[50 - 10*Sqrt[5]] + Sqrt[10 - 2*Sqrt[5]] - 2*I*(3 + Sqrt[5]))*(1 + Sqrt[5] - I*Sqrt[10 - 2*Sqrt[5]])^n)), b[n] -> (1/(1 + Sqrt[5]))*(2^(-(2*n) - 3)* ((9 + 4*I)*(6 + 2*Sqrt[5] + I*Sqrt[50 - 10*Sqrt[5]] + I*Sqrt[10 - 2*Sqrt[5]])*(1 + Sqrt[5] - I*Sqrt[10 - 2*Sqrt[5]])^n - (4 + 9*I)* (Sqrt[50 - 10*Sqrt[5]] + Sqrt[10 - 2*Sqrt[5]] + 2*I*(3 + Sqrt[5]))*(1 + Sqrt[5] + I*Sqrt[10 - 2*Sqrt[5]])^n))}} Bob Hanlon ---- ynb <wkfkh056 at yahoo.co.jp> wrote: ============= a[n + 1] = 1/4*(1 + Sqrt[5])*a[n] - 1/2*Sqrt[1/2*(5 - Sqrt[5])]*b[n], b[n + 1] = 1/2*Sqrt[1/2*(5 - Sqrt[5])]*a[n] + 1/4*(1 + Sqrt[5])*b[n], a[1] = 4, b[1] = 9. a[n]= b[n]=