trouble with entropy scaled calculation of infinite sums
- To: mathgroup at smc.vnet.net
- Subject: [mg103736] trouble with entropy scaled calculation of infinite sums
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Sun, 4 Oct 2009 05:36:22 -0400 (EDT)
- Reply-to: rlbagulatftn at yahoo.com
I found this method of doing probability scale EXP[1]=e type infinite sums. Mathematica expample for scale=11: $MaxExtraPrecision = 200 p[n_] = 11^(n - 4)/n! Table[N[p[n]], {n, 0, 20}] Sum[p[n]/11^(n - 4), {n, 0, Infinity}] h = Sum[-p[n]*Log[p[n]]/Log[11], {n, 0, Infinity}] N[h, 100] 2.0491 When I tried to generalize the result I get different entropies: $MaxExtraPrecision = 200 offset[m_] = If[n â?¤ 3, n - 1, If[n > 3 && n < 9, 3, 4]] p[n_] = m^(n - offset[m])/n! Sum[p[n]/m^(n - offset[m]), {n, 0, Infinity}] h = Table[Sum[-p[n]*Log[p[n]]/Log[m], {n, 0, Infinity}], {m, 2, 10}] a = N[h, 100] g1 = ListPlot[%] f[x_] = Fit[a, {1, x}, x] g2 = Plot[f[x], {x, 1, 10}] Show[{g1, g2}] (*a = {-2.90117869114589008263607311799541723082`25.19764247392701, \ -5.61747693461947158172664019763556648038`22.01392866733195, \ -8.0430284269112488827062685772`19.45005195473023, \ -10.3961759266392159176499409268`17.107259954035108, \ -12.7523614402263114777860738659`15.518032672389245, \ -15.1879714346591139519676022492`13.438410763485622, \ -17.8085703678062761261219369147`11.146588581999028, \ -20.7693946164903020243877987482`11.038909940936808, \ -24.3128827385636922819`10.403604749016184}*) The calculated ones that I got by the first method were: a = {{1, 0.828647127671878508038916946855867263032224616143}, {2, \ 2.12152973041735031031308637092718171875}, {3, \ 2.2928360342354146306076068033268164293}, {4, \ 2.1150848873802090954797262985}, {5, 1.499558368971973532906421064}, {6, \ 1.7455761749282651908476095034}, {7, 1.9989160419828100415205186208}, {8, \ 1.9200373452197238231646713457}, {9, 1.2908802474205237430529254129}, {10, 1.6948514808559158028}, {11, 2.0491395524030780178}, {12, \ 1.8754092475621356939}, {13, 1.1704313091632859227}, {14, 1.6319067147114207574}} Length[a] g1 = ListPlot[a] f[x_] = Fit[a, Table[x^n, {n, 0, Length[a] - 1}], x] g2 = Plot[f[x], {x, 0, 15}] Show[{g1, g2}] What I want to know is why Mathematica is getting a different answer for what should be the same infinite sums? Respectfully, Roger L. Bagula 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html alternative email: rlbagula at sbcglobal.net