Re: Re: Re: Re: Re:
- To: mathgroup at smc.vnet.net
- Subject: [mg103916] Re: [mg103883] Re: [mg103861] Re: [mg103827] Re: [mg103806] Re:
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Mon, 12 Oct 2009 06:38:27 -0400 (EDT)
- References: <ha4r9k$d0h$1@smc.vnet.net> <200910071101.HAA00387@smc.vnet.net>
- Reply-to: drmajorbob at yahoo.com
Leonid, In my tests, that code returns too many subsets, and so does David's coinSets... unless Binomial[n + k - 1, k] is the wrong count, and the earlier methods were wrong. << "Combinatorica`"; Clear[f, g, test1, test2, test3] f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] g[set_] := set - Range[0, Length@set - 1] test1[n_, k_] := f /@ KSubsets[Range[n + k - 1], k] test2[n_, k_] := g /@ KSubsets[Range[n + k - 1], k] test3[n_, k_] := g /@ Subsets[Range[n + k - 1], {k}] (* David Bevan *) msNew[s_List, k_] := Flatten[Flatten[ Outer[Inner[ConstantArray, #1, #2, Flatten[List[##], 1] &, 1] &, Subsets[s, {Length[#[[1]]]}], #, 1], 1] & /@ Split[Flatten[Permutations /@ IntegerPartitions[k], 1], Length[#1] == Length[#2] &], 1] coinSets[s_List, k_] := Join @@ Table[msNew[s, i], {i, k}] coinSets[n_Integer, k_] := coinSets[Range@n, k] (* David Bevan *) Clear[MSN3, MSN3Base] MSN3Base = Compile[{{n, _Integer}, {k, _Integer}}, Module[{h, ss = ConstantArray[1, k]}, Table[(h = k; While[n === ss[[h]], h--]; ss = Join[Take[ss, h - 1], ConstantArray[ss[[h]] + 1, k - h + 1]]), {Binomial[n + k - 1, k] - 1}]]]; MSN3[n_, k_] := Prepend[MSN3Base[n, k], ConstantArray[1, k]] (* Ray Koopman *) MSN3a[n_, k_] := Join[{Table[1, {k}]}, MSN3Base[n, k]] (* Leonid Shifrin: *) Clear[subMultiSetsNew, coinSetsNew]; subMultiSetsNew[s_List, k_] := Partition[s[[Flatten[#]]], k] &@ Transpose[ Transpose[Subsets[Range[Length[s] + k - 1], {k}]] - Range[0, k - 1]]; coinSetsNew[s_List, k_] := Flatten[Table[subMultiSetsNew[s, i], {i, k}], 1]; coinSetsNew[n_Integer, k_] := coinSetsNew[Range@n, k] n = 15; k = 7; Timing@Length@test3[n, k] Timing@Length@coinSets[n, k] Timing@Length@MSN3[n, k] Timing@Length@MSN3a[n, k] Timing@Length@coinSetsNew[n, k] Binomial[n + k - 1, k] {0.906038, 116280} {1.34786, 170543} {0.130817, 116280} {0.135289, 116280} {0.23856, 170543} 116280 n = 15; k = 10; Timing@Length@test3[n, k] Timing@Length@coinSets[n, k] Timing@Length@MSN3[n, k] Timing@Length@MSN3a[n, k] Timing@Length@coinSetsNew[n, k] Binomial[n + k - 1, k] {15.3937, 1961256} {29.7325, 3268759} {2.47349, 1961256} {2.33108, 1961256} {5.32499, 3268759} 1961256 Bobby On Sat, 10 Oct 2009 06:10:29 -0500, Leonid Shifrin <lshifr at gmail.com> wrote: > I've made a few more optimizations: > > Clear[subMultiSetsNew]; > subMultiSetsNew[s_, k_] := > Partition[s[[Flatten[#]]], k] &@ > Transpose[ > Transpose[Subsets[Range[Length[s] + k - 1], {k}]] - > Range[0, k - 1]]; > > Clear[coinSetsNew]; > coinSetsNew[s_, k_] := > Flatten[Table[subMultiSetsNew[s, i], {i, k}], 1]; > > Now (coinSets is David's "accumulator" version): > > In[1]:= (res1=coinSets[Range[15],7])//Length//Timing > > Out[1]= {2.333,170543} > > In[2]:= (res2 = coinSetsNew[Range[15],7])//Length//Timing > Out[2]= {0.37,170543} > > In[3]:= res1==res2 > > Out[3]= True > > Regards, > Leonid > > > > > > > > On Fri, Oct 9, 2009 at 4:18 AM, David Bevan <david.bevan at pb.com> wrote: > >> >> ... and using Subsets[set, {k}] is much faster than KSubsets[set, k] >> >> >> > -----Original Message----- >> > From: DrMajorBob [mailto:btreat1 at austin.rr.com] >> > Sent: 8 October 2009 17:05 >> > To: David Bevan; mathgroup at smc.vnet.net >> > Cc: bayard.webb at gmail.com >> > Subject: Re: [mg103827] Re: [mg103806] Re: generating submultisets >> with >> > repeated elements >> > >> > g is an improvement over f, I think: >> > >> > << "Combinatorica`"; >> > >> > Clear[f, g, test1, test2] >> > f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] >> > g[set_] := set - Range[0, Length@set - 1] >> > test1[n_, k_] := With[{set = Range[n + k - 1]}, >> > f /@ KSubsets[set, k]] >> > test2[n_, k_] := With[{set = Range[n + k - 1]}, >> > g /@ KSubsets[set, k]] >> > >> > n = 15; k = 10; >> > Timing@Length@test1[n, k] >> > Timing@Length@test2[n, k] >> > Binomial[n + k - 1, k] >> > >> > {32.9105, 1961256} >> > >> > {16.3832, 1961256} >> > >> > 1961256 >> > >> > Bobby >> > >> > On Thu, 08 Oct 2009 06:50:51 -0500, David Bevan <david.bevan at pb.com> >> > wrote: >> > >> > > That's an interesting bijection I wasn't aware of. Thanks. >> > > >> > > David %^> >> > > >> > >> -----Original Message----- >> > >> From: monochrome [mailto:bayard.webb at gmail.com] >> > >> Sent: 7 October 2009 12:02 >> > >> To: mathgroup at smc.vnet.net >> > >> Subject: [mg103806] Re: generating submultisets with repeated >> elements >> > >> >> > >> I did a little research and found out that there are Choose(n+k-1, >> k) >> > >> multisets of size k from a set of size n. This made me think that >> > >> there should be a mapping from the k-subsets of n+k-1 to the k- >> > >> multisets of n. A few quick examples led me to the following >> function: >> > >> >> > >> f[set_] := Table[set[[i]] - (i - 1), {i, Length[set]}] >> > >> >> > >> This allows the following construction using the KSubsets function >> > >> from Combinatorica: >> > >> >> > >> << "Combinatorica`"; >> > >> n = 6; >> > >> k = 3; >> > >> set = Range[n + k - 1]; >> > >> Map[f, KSubsets[set, k]] >> > >> >> > >> ===OUTPUT=== >> > >> {{1, 1, 1}, {1, 1, 2}, {1, 1, 3}, {1, 1, 4}, {1, 1, 5}, {1, 1, 6}, >> {1, >> > >> 2, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 3}, >> {1, >> > >> 3, 4}, {1, 3, 5}, {1, 3, 6}, {1, 4, 4}, {1, 4, 5}, {1, 4, 6}, >> {1, 5, >> > >> 5}, {1, 5, 6}, {1, 6, 6}, {2, 2, 2}, {2, 2, 3}, {2, 2, 4}, {2, >> 2, >> > >> 5}, {2, 2, 6}, {2, 3, 3}, {2, 3, 4}, {2, 3, 5}, {2, 3, 6}, {2, 4, >> > >> 4}, {2, 4, 5}, {2, 4, 6}, {2, 5, 5}, {2, 5, 6}, {2, 6, 6}, {3, 3, >> > >> 3}, {3, 3, 4}, {3, 3, 5}, {3, 3, 6}, {3, 4, 4}, {3, 4, 5}, {3, 4, >> > >> 6}, {3, 5, 5}, {3, 5, 6}, {3, 6, 6}, {4, 4, 4}, {4, 4, 5}, {4, 4, >> > >> 6}, {4, 5, 5}, {4, 5, 6}, {4, 6, 6}, {5, 5, 5}, {5, 5, 6}, {5, 6, >> > >> 6}, {6, 6, 6}} >> > >> >> > > >> > >> > >> > -- >> > DrMajorBob at yahoo.com >> >> >> > -- DrMajorBob at yahoo.com
- References:
- Re: generating submultisets with repeated elements
- From: monochrome <bayard.webb@gmail.com>
- Re: generating submultisets with repeated elements