Re: intersecting surfaces
- To: mathgroup at smc.vnet.net
- Subject: [mg107205] Re: intersecting surfaces
- From: Bill <WDWNORWALK at aol.com>
- Date: Fri, 5 Feb 2010 03:24:19 -0500 (EST)
Hi Eric: This isn't exactly what you asked for, but perhaps it will suffice... Solve[{((x - 1)^2 + (y)^2) Cos[Pi/4]^2 - ((z) Sin[Pi/4])^2 == 0, 0 == (x^2 + y^2) Cos[Pi/6]^2 - (z Sin[Pi/6])^2}, {x, z}] // N; Flatten[{{x, y, z}} /. {%[[1]], %[[2]], %[[3]], %[[4]]}]; curves = ParametricPlot3D[{Out[2]}, {y, -Pi, Pi}, PlotRange -> All, PlotStyle -> {Magenta, Thickness[.01]}]; cones = ContourPlot3D[{((x - 1)^2 + (y)^2) Cos[ Pi/4]^2 - ((z) Sin[Pi/4])^2 == 0, 0 == (x^2 + y^2) Cos[Pi/6]^2 - (z Sin[Pi/6])^2}, {x, -5, 6}, {y, -5, 5}, {z, -5, 5}, Mesh -> False, ImageSize -> 600]; Show[cones, curves] Hth, Bill (Mathematica 6.0.1, Win XP on a pc.)