Re: intersecting surfaces
- To: mathgroup at smc.vnet.net
- Subject: [mg107207] Re: [mg107151] intersecting surfaces
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 5 Feb 2010 03:24:41 -0500 (EST)
- Reply-to: hanlonr at cox.net
eqns = { ((x - 1)^2 + (y)^2) Cos[Pi/4]^2 - ((z) Sin[Pi/4])^2 == 0, 0 == (x^2 + y^2) Cos[Pi/6]^2 - (z Sin[Pi/6])^2} plt1 = ContourPlot3D[Evaluate[eqns], {x, -5, 6}, {y, -5, 5}, {z, -5, 5}] (sub = {Reduce[eqns] // ToRules}) // Column plt2 = ParametricPlot3D[ Evaluate[{x, y, z} /. sub], {z, -5, 5}, PlotStyle -> Directive[Red, Thick]] Show[plt1, plt2] Bob Hanlon ---- cire g <eric.phys at gmail.com> wrote: ============= Hello Guys, How to set CountourPlot3D to plot the intersection of two surfaces. For example I would like to see the curve of the intersection of these cones: ContourPlot3D[{((x - 1)^2 + (y)^2) Cos[Pi/4]^2 - ((z ) Sin[Pi/4])^2 == 0 , 0 == (x^2 + y^2) Cos[Pi/6]^2 - (z Sin[Pi/6])^2}, {x, -5, 6}, {y, -5, 5}, {z, -5, 5}] Best regards, eric