Re: intersecting surfaces
- To: mathgroup at smc.vnet.net
- Subject: [mg107208] Re: [mg107151] intersecting surfaces
- From: "David Park" <djmpark at comcast.net>
- Date: Fri, 5 Feb 2010 03:24:52 -0500 (EST)
- References: <2112561.1265283295770.JavaMail.root@n11>
Cone equations: cone1 = ((x - 1)^2 + y^2) Cos[\[Pi]/4]^2 - (z Sin[\[Pi]/4])^2 == 0; cone2 = (x^2 + y^2) Cos[\[Pi]/6]^2 - (z Sin[\[Pi]/6])^2 == 0; Solve for x and y: xysols = Solve[{cone1, cone2}, {x, y}] Parameterize the intersections: intersection1[z_] = {x, y, z} /. First[xysols] intersection2[z_] = {x, y, z} /. Last[xysols] Plot the cones and the intersections: Needs["Presentations`Master`"] Draw3DItems[ {(* The two cones *) Opacity[.5], ContourDraw3D[cone1 // Evaluate, {x, -5, 6}, {y, -5, 5}, {z, -5, 5}, ContourStyle -> Orange, Mesh -> False], ContourDraw3D[cone2 // Evaluate, {x, -5, 6}, {y, -5, 5}, {z, -5, 5}, ContourStyle -> Green, Mesh -> False], (* The intersections *) Opacity[1], Black, AbsoluteThickness[2], ParametricDraw3D[intersection1[z], {z, -3, 3}], ParametricDraw3D[intersection2[z], {z, -3, 3}]}, NeutralLighting[0, .5, .1], NiceRotation, Boxed -> False] Each intersection solution is split between the upper and lower cones. David Park djmpark at comcast.net http://home.comcast.net/~djmpark/ From: cire g [mailto:eric.phys at gmail.com] Hello Guys, How to set CountourPlot3D to plot the intersection of two surfaces. For example I would like to see the curve of the intersection of these cones: ContourPlot3D[{((x - 1)^2 + (y)^2) Cos[Pi/4]^2 - ((z ) Sin[Pi/4])^2 == 0 , 0 == (x^2 + y^2) Cos[Pi/6]^2 - (z Sin[Pi/6])^2}, {x, -5, 6}, {y, -5, 5}, {z, -5, 5}] Best regards, eric