Re: Simplifying Bessel functions
- To: mathgroup at smc.vnet.net
- Subject: [mg107287] Re: Simplifying Bessel functions
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Mon, 8 Feb 2010 03:34:27 -0500 (EST)
- References: <hkj90t$du1$1@smc.vnet.net>
Sam Takoy schrieb: > Hi, > > Mathematica does not seem to simplify the following expression: > > (BesselJ[2, BesselJZero[0, n]] BesselJZero[0, n]^2)/ BesselJ[1, > BesselJZero[0, n]] > > (I believe the answer is 2 BesselJZero[0, n]^2) > > Is there a way of making Mathematica deal with these types of expressions? You want to Simplify In: expr = (BesselJ[2, BesselJZero[0, n]] BesselJZero[0, n]^2)/ BesselJ[1, BesselJZero[0, n]] /. BesselJZero[0, n] -> z Out: (z^2 BesselJ[2, z])/BesselJ[1, z] Now Solve from the recursion formula for the highest order Bessel function In: rp[n_] = (Solve[ z BesselJ[n - 2, z] + z BesselJ[n, z] == 2 n BesselJ[n - 1, z] , BesselJ[n, z]] // First) Out: {BesselJ[n, z] -> (-z BesselJ[-2 + n, z] + 2 n BesselJ[-1 + n, z])/z} In: expr1 = Simplify[expr /. rp[2]] Out: z (4 - (z BesselJ[0, z])/BesselJ[1, z]) In: expr2 = FullSimplify[expr1 /. z -> BesselJZero[0, n]] Out: BesselJZero[0, n] * (4 - (BesselJ[0, BesselJZero[0, n]] BesselJZero[0, n])/ BesselJ[1, BesselJZero[0, n]]) By definition BesselJ[0, BesselJ[0, n]] -> 0 the result is In: expr2 = FullSimplify[expr1 /. z -> BesselJZero[0, n]] Out: BesselJZero[0, n] * (4 - (BesselJ[0, BesselJZero[0, n]] BesselJZero[0, n])/ BesselJ[1, BesselJZero[0, n]]) Mathematica does not reduce symbolic orders of Bessel functions. Assuming[ n > 0 && n \[Element] Integers, FullSimplify[expr2]] But for explicit integer n_ eg In: expr2 /. n -> 3 Out: 4 BesselJZero[0, 3] it works. Hope it helps. -- Roland Franzius