Arctangent approximation
- To: mathgroup at smc.vnet.net
- Subject: [mg107560] Arctangent approximation
- From: sidey <sidey.p.timmins at census.gov>
- Date: Wed, 17 Feb 2010 07:02:10 -0500 (EST)
A professor (Herbert Medina) came up with this remarkable approximation. Since I don't have Mathematica, could someone run it for numberofdigits=9 and 12 please? (and send me the result?) here is a short result h2(x) = x - x^3/3 + x^5/5 - x^7/7 + 5x^9/48.. Thank you. PS reference is: http://myweb.lmu.edu/hmedina/Papers/Arctan.pdf Clear[h, m, a, numberofdigits] numberofdigits=12; m=Floor[-(1/5) Log[4,5*0.1^(numberofdigits+1)]]+1; Do[a[2j]=(-1)^(j+1) Sum[Binomial[4m,2k] (-1)^k, {k,j+1,2m}]; a[2j-1]=(-1)^(j+1) Sum[Binomial[4m,2k+1] (-1)^k, {k,j,2m-1}], {j,0,2m-1}]; h[m,x_]:=Sum[(-1)^(j+1) / (2j-1) x^(2j-1), {j,1,2m}] + Sum[a[j]/((-1)^(m+1) 4^m (4m+j+1)) x^(4m+j+1), {j,0, 4m-2}]; Print["h[",m,",x] given below computes ArcTan[x] with ", numberofdigits," digits of accuracy for x in [0,1]."] Print["h[m,x] = ", h[m,x]]
- Follow-Ups:
- Re: Arctangent approximation
- From: Murray Eisenberg <murray@math.umass.edu>
- Re: Arctangent approximation