Re: why an extra mark in legend?
- To: mathgroup at smc.vnet.net
- Subject: [mg106380] Re: [mg106240] why an extra mark in legend?
- From: Haibo Min <haibo.min at gmail.com>
- Date: Mon, 11 Jan 2010 05:29:26 -0500 (EST)
- References: <hi1qb7$ejb$1@smc.vnet.net> <201001070730.CAA23819@smc.vnet.net>
I am sorry that I didn't make it clear. What I did is simulation using NDSolve. The code is as follows, and the problem is that It was supposed to have three marks in the legend for \tau, but I got four, where one of the marks had no text. Why? Needs["PlotLegends`"]; Subscript[m, 1] = 1; Subscript[l, 1] = 1; Subscript[m, e] = 2; \ Subscript[\[Delta], e] = \[Pi]/ 6; Subscript[I, 1] = 0.12; Subscript[l, c1] = 0.5; Subscript[i, e] \ = 0.25; Subscript[l, ce] = 0.6; K = 2; T = 1; \[CapitalGamma] = 2 IdentityMatrix[4]; \[CapitalLambda] = \[CapitalGamma]; B = 0.5; a1 = Subscript[I, 1] + Subscript[m, 1] Subscript[l, c1]^2 + Subscript[ i, e] + Subscript[m, e] Subscript[l, ce]^2 + Subscript[m, e] Subscript[l, 1]^2; a2 = Subscript[i, e] + Subscript[m, e] Subscript[l, ce]^2; a3 = Subscript[m, e] Subscript[l, 1] Subscript[l, ce] Cos[Subscript[\[Delta], e]]; a4 = Subscript[m, e] Subscript[l, 1] Subscript[l, ce] Sin[Subscript[\[Delta], e]]; qm[t1_] := {qm1[t1], qm2[t1]}; qmm[tm1_] := {qmm1[tm1], qmm2[tm1]}; qs[t3_] := {qs1[t3], qs2[t3]}; qss[tm3_] := {qss1[tm3], qss2[tm3]}; \[Epsilon]m[ t11_] := {-qm1'[t11] + qs1[t11 - T] - qm1[t11], -qm2'[t11] + qs2[t11 - T] - qm2[t11]}; \[Epsilon]s[ t12_] := {-qs1'[t12] + qmm1[t12 - T] - qs1[t12], -qs2'[t12] + qmm2[t12 - T] - qs2[t12]}; \[Epsilon]mm[ t13_] := {-qmm1'[t13] + qss1[t13 - T] - qmm1[t13], -qmm2'[t13] + qss2[t13 - T] - qmm2[t13]}; \[Epsilon]ss[ t14_] := {-qss1'[t14] + qm1[t14 - T] - qss1[t14], -qss2'[t14] + qm2[t14 - T] - qss2[t14]}; \[Tau]m[t15_] := K \[Epsilon]m[t15] + B (D[qs[t15 - T] - qm[t15], t15]); \[Tau]s[t16_] := K \[Epsilon]s[t16] + B (D[qmm[t16 - T] - qs[t16], t16]); \[Tau]mm[ t17_] := K \[Epsilon]mm[t17] + B (D[qss[t17 - T] - qmm[t17], t17]); \[Tau]ss[t18_] := K \[Epsilon]ss[t18] + B (D[qm[t18 - T] - qss[t18], t18]); Hm11[t5_] := a1 + 2 a3 Cos[qm[t5][[2]]] + 2 a4 Sin[qm[t5][[2]]]; Hm12[t6_] := a2 + a3 Cos[qm[t6][[2]]] + a4 Sin[qm[t6][[2]]]; Hm21[t7_] := Hm12[t7]; Hm22 = a2; hm[t9_] := a3 Sin[qm[t9][[2]]] - a4 Cos[qm[t9][[2]]]; Hmm11[tm5_] := a1 + 2 a3 Cos[qmm[tm5][[2]]] + 2 a4 Sin[qmm[tm5][[2]]]; Hmm12[tm6_] := a2 + a3 Cos[qmm[tm6][[2]]] + a4 Sin[qmm[tm6][[2]]]; Hmm21[tm7_] := Hmm12[tm7]; Hmm22 = a2; hmm[tm9_] := a3 Sin[qmm[tm9][[2]]] - a4 Cos[qmm[tm9][[2]]]; Mm[t8_] := ( { {Hm11[t8], Hm12[t8]}, {Hm12[t8], Hm22} } ); Cm[t10_] := ( { {-hm[t10] D[qm[t10][[2]], t10], -hm[t10] (D[qm[t10][[2]], t10] + D[qm[t10][[1]], t10])}, {hm[t10] D[qm[t10][[1]], t10], 0} } ) Mmm[tm8_] := ( { {Hmm11[tm8], Hmm12[tm8]}, {Hmm12[tm8], Hmm22} } ); Cmm[tm10_] := ( { {-hmm[tm10] D[qmm[tm10][[2]], tm10], -hmm[tm10] (D[qmm[tm10][[2]], tm10] + D[qmm[tm10][[1]], tm10])}, {hmm[tm10] D[qmm[tm10][[1]], tm10], 0} } ) Hs11[tt5_] := a1 + 2 a3 Cos[qs[tt5][[2]]] + 2 a4 Sin[qs[tt5][[2]]]; Hs12[tt6_] := a2 + a3 Cos[qs[tt6][[2]]] + a4 Sin[qs[tt6][[2]]]; Hs21[tt7_] := Hs12[tt7]; Hs22 = a2; hs[tt9_] := a3 Sin[qs[tt9][[2]]] - a4 Cos[qs[tt9][[2]]]; Hss11[tts5_] := a1 + 2 a3 Cos[qss[tts5][[2]]] + 2 a4 Sin[qss[tts5][[2]]]; Hss12[tts6_] := a2 + a3 Cos[qss[tts6][[2]]] + a4 Sin[qss[tts6][[2]]]; Hss21[tts7_] := Hss12[tts7]; Hss22 = a2; hss[tts9_] := a3 Sin[qss[tts9][[2]]] - a4 Cos[qss[tts9][[2]]]; Ms[tt8_] := ( { {Hs11[tt8], Hs12[tt8]}, {Hs12[tt8], Hs22} } ); Cs[tt10_] := ( { {-hs[tt10] D[qs[tt10][[2]], tt10], -hs[tt10] (D[qs[tt10][[2]], tt10] + D[qs[tt10][[1]], tt10])}, {hs[tt10] D[qs[tt10][[1]], tt10], 0} } ) Mss[tts8_] := ( { {Hss11[tts8], Hss12[tts8]}, {Hss12[tts8], Hss22} } ); Css[tts10_] := ( { {-hss[tts10] D[qss[tts10][[2]], tts10], -hss[tts10] (D[qss[tts10][[2]], tts10] + D[qss[tts10][[1]], tts10])}, {hss[tts10] D[qss[tts10][[1]], tts10], 0} } ) Ym[ttt_] := ( { {D[qm[ttt][[1]], ttt], D[qm[ttt][[2]], ttt], (2 D[qm[ttt][[1]], ttt] + D[qm[ttt][[2]], ttt]) Cos[ qm[ttt][[2]]] - (D[qm[ttt][[2]], ttt] qm[ttt][[1]] + D[qm[ttt][[1]], ttt] qm[ttt][[2]] + D[qm[ttt][[2]], ttt] qm[ttt][[2]]) Sin[ qm[ttt][[2]]], (2 D[qm[ttt][[1]], ttt] + D[qm[ttt][[2]], ttt]) Sin[ qm[ttt][[2]]] + (D[qm[ttt][[2]], ttt] qm[ttt][[1]] + D[qm[ttt][[1]], ttt] qm[ttt][[2]] + D[qm[ttt][[2]], ttt] qm[ttt][[2]]) Cos[qm[ttt][[2]]]}, {0, D[qm[ttt][[1]], ttt] + D[qm[ttt][[2]], ttt], D[qm[ttt][[1]], ttt] Cos[qm[ttt][[2]]] + D[qm[ttt][[1]], ttt] qm[ttt][[1]] Sin[ qm[ttt][[2]]], -D[qm[ttt][[1]], ttt] qm[ttt][[1]] Cos[ qm[ttt][[2]]] + D[qm[ttt][[1]], ttt] Sin[qm[ttt][[2]]]} } ) Ymm[tttm_] := ( { {D[qmm[tttm][[1]], tttm], D[qmm[tttm][[2]], tttm], (2 D[qmm[tttm][[1]], tttm] + D[qmm[tttm][[2]], tttm]) Cos[ qmm[tttm][[2]]] - (D[qmm[tttm][[2]], tttm] qmm[tttm][[1]] + D[qmm[tttm][[1]], tttm] qmm[tttm][[2]] + D[qmm[tttm][[2]], tttm] qmm[tttm][[2]]) Sin[ qmm[tttm][[2]]], (2 D[qmm[tttm][[1]], tttm] + D[qmm[tttm][[2]], tttm]) Sin[ qmm[tttm][[2]]] + (D[qmm[tttm][[2]], tttm] qmm[tttm][[1]] + D[qmm[tttm][[1]], tttm] qmm[tttm][[2]] + D[qmm[tttm][[2]], tttm] qmm[tttm][[2]]) Cos[qmm[tttm][[2]]]}, {0, D[qmm[tttm][[1]], tttm] + D[qmm[tttm][[2]], tttm], D[qmm[tttm][[1]], tttm] Cos[qmm[tttm][[2]]] + D[qmm[tttm][[1]], tttm] qmm[tttm][[1]] Sin[ qmm[tttm][[2]]], -D[qmm[tttm][[1]], tttm] qmm[tttm][[1]] Cos[ qmm[tttm][[2]]] + D[qmm[tttm][[1]], tttm] Sin[qmm[tttm][[2]]]} } ) Ys[tttt_] := ( { {D[qs[tttt][[1]], tttt], D[qs[tttt][[2]], tttt], (2 D[qs[tttt][[1]], tttt] + D[qs[tttt][[2]], tttt]) Cos[ qs[tttt][[2]]] - (D[qs[tttt][[2]], tttt] qs[tttt][[1]] + D[qs[tttt][[1]], tttt] qs[tttt][[2]] + D[qs[tttt][[2]], tttt] qs[tttt][[2]]) Sin[ qs[tttt][[2]]], (2 D[qs[tttt][[1]], tttt] + D[qs[tttt][[2]], tttt]) Sin[ qs[tttt][[2]]] + (D[qs[tttt][[2]], tttt] qs[tttt][[1]] + D[qs[tttt][[1]], tttt] qs[tttt][[2]] + D[qs[tttt][[2]], tttt] qs[tttt][[2]]) Cos[qs[tttt][[2]]]}, {0, D[qs[tttt][[1]], tttt] + D[qs[tttt][[2]], tttt], D[qs[tttt][[1]], tttt] Cos[qs[tttt][[2]]] + D[qs[tttt][[1]], tttt] qs[tttt][[1]] Sin[ qs[tttt][[2]]], -D[qs[tttt][[1]], tttt] qs[tttt][[1]] Cos[ qs[tttt][[2]]] + D[qs[tttt][[1]], tttt] Sin[qs[tttt][[2]]]} } ) Yss[tttts_] := ( { {D[qss[tttts][[1]], tttts], D[qss[tttts][[2]], tttts], (2 D[qss[tttts][[1]], tttts] + D[qss[tttts][[2]], tttts]) Cos[ qss[tttts][[2]]] - (D[qss[tttts][[2]], tttts] qss[tttts][[1]] + D[qss[tttts][[1]], tttts] qss[tttts][[2]] + D[qss[tttts][[2]], tttts] qss[tttts][[2]]) Sin[ qss[tttts][[2]]], (2 D[qss[tttts][[1]], tttts] + D[qss[tttts][[2]], tttts]) Sin[ qss[tttts][[2]]] + (D[qss[tttts][[2]], tttts] qss[tttts][[1]] + D[qss[tttts][[1]], tttts] qss[tttts][[2]] + D[qss[tttts][[2]], tttts] qss[tttts][[2]]) Cos[ qss[tttts][[2]]]}, {0, D[qss[tttts][[1]], tttts] + D[qss[tttts][[2]], tttts], D[qss[tttts][[1]], tttts] Cos[qss[tttts][[2]]] + D[qss[tttts][[1]], tttts] qss[tttts][[1]] Sin[ qss[tttts][[2]]], -D[qss[tttts][[1]], tttts] qss[tttts][[ 1]] Cos[qss[tttts][[2]]] + D[qss[tttts][[1]], tttts] Sin[qss[tttts][[2]]]} } ) \[Theta]m[ time_] := {\[Theta]m1[time], \[Theta]m2[time], \[Theta]m3[ time], \[Theta]m4[time]}; \[Theta]mm[ timem_] := {\[Theta]mm1[timem], \[Theta]mm2[timem], \[Theta]mm3[ timem], \[Theta]mm4[timem]}; \[Theta]s[ time1_] := {\[Theta]s1[time1], \[Theta]s2[time1], \[Theta]s3[ time1], \[Theta]s4[time1]}; \[Theta]ss[ times1_] := {\[Theta]ss1[times1], \[Theta]ss2[times1], \[Theta]ss3[ times1], \[Theta]ss4[times1]}; ThreadEqual = {lhs__} == {rhs__} :> Thread[{lhs} == {rhs}]; s = NDSolve[{Mm[t][[1, 1]] \[Epsilon]m'[t][[1]] + Mm[t][[1, 2]] \[Epsilon]m'[t][[2]] + Cm[t][[1, 1]] \[Epsilon]m[t][[1]] + Cm[t][[1, 2]] \[Epsilon]m[t][[2]] == Ym[t][[1, 1]] \[Theta]m[t][[1]] + Ym[t][[1, 2]] \[Theta]m[t][[2]] + Ym[t][[1, 3]] \[Theta]m[t][[3]] + Ym[t][[1, 4]] \[Theta]m[t][[4]] - \[Tau]m[t][[1]], Mm[t][[2, 1]] \[Epsilon]m'[t][[1]] + Mm[t][[2, 2]] \[Epsilon]m'[t][[2]] + Cm[t][[2, 1]] \[Epsilon]m[t][[1]] + Cm[t][[2, 2]] \[Epsilon]m[t][[2]] == Ym[t][[2, 1]] \[Theta]m[t][[1]] + Ym[t][[2, 2]] \[Theta]m[t][[2]] + Ym[t][[2, 3]] \[Theta]m[t][[3]] + Ym[t][[2, 4]] \[Theta]m[t][[4]] - \[Tau]m[t][[2]], Mmm[t][[1, 1]] \[Epsilon]mm'[t][[1]] + Mmm[t][[1, 2]] \[Epsilon]mm'[t][[2]] + Cmm[t][[1, 1]] \[Epsilon]mm[t][[1]] + Cmm[t][[1, 2]] \[Epsilon]mm[t][[2]] == Ymm[t][[1, 1]] \[Theta]mm[t][[1]] + Ymm[t][[1, 2]] \[Theta]mm[t][[2]] + Ymm[t][[1, 3]] \[Theta]mm[t][[3]] + Ymm[t][[1, 4]] \[Theta]mm[t][[4]] - \[Tau]mm[t][[1]], Mmm[t][[2, 1]] \[Epsilon]mm'[t][[1]] + Mmm[t][[2, 2]] \[Epsilon]mm'[t][[2]] + Cmm[t][[2, 1]] \[Epsilon]mm[t][[1]] + Cmm[t][[2, 2]] \[Epsilon]mm[t][[2]] == Ymm[t][[2, 1]] \[Theta]mm[t][[1]] + Ymm[t][[2, 2]] \[Theta]mm[t][[2]] + Ymm[t][[2, 3]] \[Theta]mm[t][[3]] + Ymm[t][[2, 4]] \[Theta]mm[t][[4]] - \[Tau]mm[t][[2]], Ms[t][[1, 1]] \[Epsilon]s'[t][[1]] + Ms[t][[1, 2]] \[Epsilon]s'[t][[2]] + Cs[t][[1, 1]] \[Epsilon]s[t][[1]] + Cs[t][[1, 2]] \[Epsilon]s[t][[2]] == Ys[t][[1, 1]] \[Theta]s[t][[1]] + Ys[t][[1, 2]] \[Theta]s[t][[2]] + Ys[t][[1, 3]] \[Theta]s[t][[3]] + Ys[t][[1, 4]] \[Theta]s[t][[4]] - \[Tau]s[t][[1]], Ms[t][[2, 1]] \[Epsilon]s'[t][[1]] + Ms[t][[2, 2]] \[Epsilon]s'[t][[2]] + Cs[t][[2, 1]] \[Epsilon]s[t][[1]] + Cs[t][[2, 2]] \[Epsilon]s[t][[2]] == Ys[t][[2, 1]] \[Theta]s[t][[1]] + Ys[t][[2, 2]] \[Theta]s[t][[2]] + Ys[t][[2, 3]] \[Theta]s[t][[3]] + Ys[t][[2, 4]] \[Theta]s[t][[4]] - \[Tau]s[t][[2]], Mss[t][[1, 1]] \[Epsilon]ss'[t][[1]] + Mss[t][[1, 2]] \[Epsilon]ss'[t][[2]] + Css[t][[1, 1]] \[Epsilon]ss[t][[1]] + Css[t][[1, 2]] \[Epsilon]ss[t][[2]] == Yss[t][[1, 1]] \[Theta]ss[t][[1]] + Yss[t][[1, 2]] \[Theta]ss[t][[2]] + Yss[t][[1, 3]] \[Theta]ss[t][[3]] + Yss[t][[1, 4]] \[Theta]ss[t][[4]] - \[Tau]ss[t][[1]], Mss[t][[2, 1]] \[Epsilon]ss'[t][[1]] + Mss[t][[2, 2]] \[Epsilon]ss'[t][[2]] + Css[t][[2, 1]] \[Epsilon]ss[t][[1]] + Css[t][[2, 2]] \[Epsilon]ss[t][[2]] == Yss[t][[2, 1]] \[Theta]ss[t][[1]] + Yss[t][[2, 2]] \[Theta]ss[t][[2]] + Yss[t][[2, 3]] \[Theta]ss[t][[3]] + Yss[t][[2, 4]] \[Theta]ss[t][[4]] - \[Tau]ss[t][[ 2]], \[Theta]m'[t][[ 1]] == -(Transpose[Ym[t]][[1, 1]] \[Epsilon]m[t][[1]] + Transpose[Ym[t]][[1, 2]] \[Epsilon]m[t][[2]]), \[Theta]m'[t][[ 2]] == -(Transpose[Ym[t]][[2, 1]] \[Epsilon]m[t][[1]] + Transpose[Ym[t]][[2, 2]] \[Epsilon]m[t][[2]]), \[Theta]m'[t][[ 3]] == -(Transpose[Ym[t]][[3, 1]] \[Epsilon]m[t][[1]] + Transpose[Ym[t]][[3, 2]] \[Epsilon]m[t][[2]]), \[Theta]m'[t][[ 4]] == -(Transpose[Ym[t]][[4, 1]] \[Epsilon]m[t][[1]] + Transpose[Ym[t]][[4, 2]] \[Epsilon]m[t][[2]]), \[Theta]s'[t][[ 1]] == -(Transpose[Ys[t]][[1, 1]] \[Epsilon]s[t][[1]] + Transpose[Ys[t]][[1, 2]] \[Epsilon]s[t][[2]]), \[Theta]s'[t][[ 2]] == -(Transpose[Ys[t]][[2, 1]] \[Epsilon]s[t][[1]] + Transpose[Ys[t]][[2, 2]] \[Epsilon]s[t][[2]]), \[Theta]s'[t][[ 3]] == -(Transpose[Ys[t]][[3, 1]] \[Epsilon]s[t][[1]] + Transpose[Ys[t]][[3, 2]] \[Epsilon]s[t][[2]]), \[Theta]s'[t][[ 4]] == -(Transpose[Ys[t]][[4, 1]] \[Epsilon]s[t][[1]] + Transpose[Ys[t]][[4, 2]] \[Epsilon]s[t][[2]]), \[Theta]mm'[ t][[1]] == -(Transpose[Ymm[t]][[1, 1]] \[Epsilon]mm[t][[1]] + Transpose[Ymm[t]][[1, 2]] \[Epsilon]mm[t][[2]]), \[Theta]mm'[ t][[2]] == -(Transpose[Ymm[t]][[2, 1]] \[Epsilon]mm[t][[1]] + Transpose[Ymm[t]][[2, 2]] \[Epsilon]mm[t][[2]]), \[Theta]mm'[ t][[3]] == -(Transpose[Ymm[t]][[3, 1]] \[Epsilon]mm[t][[1]] + Transpose[Ymm[t]][[3, 2]] \[Epsilon]mm[t][[2]]), \[Theta]mm'[ t][[4]] == -(Transpose[Ymm[t]][[4, 1]] \[Epsilon]mm[t][[1]] + Transpose[Ymm[t]][[4, 2]] \[Epsilon]mm[t][[2]]), \[Theta]ss'[ t][[1]] == -(Transpose[Yss[t]][[1, 1]] \[Epsilon]ss[t][[1]] + Transpose[Yss[t]][[1, 2]] \[Epsilon]ss[t][[2]]), \[Theta]ss'[ t][[2]] == -(Transpose[Yss[t]][[2, 1]] \[Epsilon]ss[t][[1]] + Transpose[Yss[t]][[2, 2]] \[Epsilon]ss[t][[2]]), \[Theta]ss'[ t][[3]] == -(Transpose[Yss[t]][[3, 1]] \[Epsilon]ss[t][[1]] + Transpose[Yss[t]][[3, 2]] \[Epsilon]ss[t][[2]]), \[Theta]ss'[ t][[4]] == -(Transpose[Yss[t]][[4, 1]] \[Epsilon]ss[t][[1]] + Transpose[Yss[t]][[4, 2]] \[Epsilon]ss[t][[2]]), qmm1[t /; t <= 0] == 0.2, qmm1'[t /; t <= 0] == -0.15, qmm2[t /; t <= 0] == 0.1, qmm2'[t /; t <= 0] == 0.1, qss1[t /; t <= 0] == 0.1, qss1'[t /; t <= 0] == 0.1, qss2[t /; t <= 0] == -0.1, qss2'[t /; t <= 0] == 0.3, \[Theta]mm1[t /; t <= 0] == 0.8 a1, \[Theta]mm2[t /; t <= 0] == 0.8 a2, \[Theta]mm3[t /; t <= 0] == 0.8 a3, \[Theta]mm4[t /; t <= 0] == 0.1, \[Theta]ss1[t /; t <= 0] == 0.8 a1, \[Theta]ss2[t /; t <= 0] == 0.8 a2, \[Theta]ss3[t /; t <= 0] == 0.8 a3, \[Theta]ss4[t /; t <= 0] == 0.8 a4, qm1[t /; t <= 0] == -0.1, qm1'[t /; t <= 0] == -0.2, qm2[t /; t <= 0] == 0.1, qm2'[t /; t <= 0] == 0.1, qs1[t /; t <= 0] == -0.3, qs1'[t /; t <= 0] == 0.2, qs2[t /; t <= 0] == -0.2, qs2'[t /; t <= 0] == 0.1, \[Theta]m1[t /; t <= 0] == 0.8 a1, \[Theta]m2[t /; t <= 0] == 0.8 a2, \[Theta]m3[t /; t <= 0] == 0.8 a3, \[Theta]m4[t /; t <= 0] == 0.8 a4, \[Theta]s1[t /; t <= 0] == 0.8 a1, \[Theta]s2[t /; t <= 0] == 0.8 a2, \[Theta]s3[t /; t <= 0] == 0.8 a3, \[Theta]s4[t /; t <= 0] == 0.8 a4}, {qmm1, qmm2, qss1, qss2, \[Theta]mm1, \[Theta]mm2, \[Theta]mm3, \[Theta]mm4, \ \[Theta]ss1, \[Theta]ss2, \[Theta]ss3, \[Theta]ss4, qm1, qm2, qs1, qs2, \[Theta]m1, \[Theta]m2, \[Theta]m3, \[Theta]m4, \[Theta]s1, \ \[Theta]s2, \[Theta]s3, \[Theta]s4}, {t, 0, 100}]; GraphicsRow[{Plot[{\[Tau]s[t][[1]], \[Tau]ss[t][[1]], \[Tau]mm[ t][[1]]} /. s // Evaluate, {t, 0, 20}, PlotRange -> {{0, 20}, {-2, 1}}, Frame -> True, Axes -> True, FrameLabel -> {"Time(s)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"i\", RowBox[{\"(\", \"1\", \")\"}]]\)'(t)"}, PlotStyle -> {{Red, Dashed, Thick}, {Blue, Thick}, {Black, Dotted, Thick}}, PlotLegend -> {"\!\(\*SubsuperscriptBox[\"\[Tau]\", \"2\", RowBox[{\"(\", \"1\", \")\"}]]\)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"3\", RowBox[{\"(\", \"1\", \")\"}]]\)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"4\", RowBox[{\"(\", \"1\", \")\"}]]\)"}, LegendPosition -> {0.5, -0.3}, LegendSize -> {0.2, 0.3}, LegendShadow -> None], Plot[{\[Tau]s[t][[2]], \[Tau]ss[t][[2]], \[Tau]mm[t][[2]]} /. s // Evaluate, {t, 0, 20}, PlotRange -> {{0, 20}, {-1, 2}}, Frame -> True, Axes -> True, FrameLabel -> {"Time(s)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"i\", RowBox[{\"(\", \"2\", \")\"}]]\)'(t)"}, PlotStyle -> {{Red, Dashed, Thick}, {Blue, Thick}, {Black, Dotted, Thick}}, PlotLegend -> {"\!\(\*SubsuperscriptBox[\"\[Tau]\", \"2\", RowBox[{\"(\", \"2\", \")\"}]]\)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"3\", RowBox[{\"(\", \"2\", \")\"}]]\)", "\!\(\*SubsuperscriptBox[\"\[Tau]\", \"4\", RowBox[{\"(\", \"2\", \")\"}]]\)"}, LegendPosition -> {0.5, 0.1}, LegendSize -> {0.2, 0.3}, LegendShadow -> None, ImageSize -> {450, 300}]}, ImageSize -> {900, 300}, Spacings -> 0]
- References:
- Re: why an extra mark in legend?
- From: dh <dh@metrohm.com>
- Re: why an extra mark in legend?