trouble with a Binet in a generalized Pell recursion
- To: mathgroup at smc.vnet.net
- Subject: [mg106473] trouble with a Binet in a generalized Pell recursion
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Thu, 14 Jan 2010 05:46:14 -0500 (EST)
The Pell equations come from the recursion: a(n)=2*a(n-1)+a(n-2) with two different starting points:{0,1}, and {1,1}. I generalized that to: a(n)=a0*a(n-1)+a(n-2) Three ( almost) different ways to do Pell recursions. 1) simple recursion 2) Binet root forms 3) Matrix Markov The Binet form for the second function type doesn't work. The modulo two patterns are simple patterns and not the fractals I was hoping for when I thought of this last night. Mathematica: Clear[f, g, a, b, v1, v2, n, a0, b0, f1, g1] f[0, a_] := 0; f[1, a_] := 1; f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a] g[0, a_] := 1; g[1, a_] := 1; g[n_, a_] := g[n, a] = a*g[n - 1, a] + g[n - 2, a] Table[f[n, a], {n, 0, 10}, {a, 1, 11}] Table[g[n, a], {n, 0, 10}, {a, 1, 11}] b0 = x /. Solve[x^2 - a*x - 1 == 0, x][[1]] a0 = x /. Solve[x^2 - a*x - 1 == 0, x][[2]] FullSimplify[a0 - b0] FullSimplify[a0 + b0] f1[n_, a_] := (a0^n - b0^n)/Sqrt[4 + a^2] g1[n_, a_] := (a0^n + b0^n)/a Table[FullSimplify[ExpandAll[f1[n, a]]], {n, 0, 10}, {a, 1, 11}] Table[FullSimplify[ExpandAll[g1[n, a]]], {n, 0, 10}, {a, 1, 11}] v1[n_, a_] = MatrixPower[{{0, 1}, {1, a}}, n].{0, 1} v2[n_, a_] = MatrixPower[{{0, 1}, {1, a}}, n].{1, 1} Table[FullSimplify[ExpandAll[v1[n, a][[1]]]], {n, 0, 10}, {a, 1, 11}] Table[FullSimplify[ExpandAll[v2[n, a][[1]]]], {n, 0, 10}, {a, 1, 11}] ListDensityPlot[Table[Mod[f[n, a], 2], {n, 0, 32}, {a, 1, 33}], Mesh -> False] ListDensityPlot[Table[Mod[g[n, a], 2], {n, 0, 32}, {a, 1, 33}], Mesh - > False] Respectfully, Roger L. Bagula 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : http://www.google.com/profiles/Roger.Bagula alternative email: roger.bagula at gmail.com
- Follow-Ups:
- Re: trouble with a Binet in a generalized Pell recursion
- From: Daniel Lichtblau <danl@wolfram.com>
- Re: trouble with a Binet in a generalized Pell recursion