Re: trouble with a Binet in a generalized Pell recursion
- To: mathgroup at smc.vnet.net
- Subject: [mg106632] Re: trouble with a Binet in a generalized Pell recursion
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Tue, 19 Jan 2010 05:14:20 -0500 (EST)
- References: <201001141046.FAA19694@smc.vnet.net> <hip8bk$sto$1@smc.vnet.net>
On Jan 15, 12:17 am, Daniel Lichtblau <d... at wolfram.com> wrote: > RogerBagulawrote: > > The Pell equations come from the recursion: > > a(n)=2*a(n-1)+a(n-2) > > with two different starting points:{0,1}, and {1,1}. > > I generalized that to: > > a(n)=a0*a(n-1)+a(n-2) > > > Three ( almost) different ways to do Pell recursions. > > 1) simple recursion > > 2) Binet root forms > > 3) Matrix Markov > > The Binet form for the second function type doesn't work. > > > The modulo two patterns are simple patterns and not the fractals I > > was hoping for > > when I thought of this last night. > > > Mathematica: > > Clear[f, g, a, b, v1, v2, n, a0, b0, f1, g1] > > f[0, a_] := 0; f[1, a_] := 1; > > f[n_, a_] := f[n, a] = a*f[n - 1, a] + f[n - 2, a] > > g[0, a_] := 1; g[1, a_] := 1; > > g[n_, a_] := g[n, a] = a*g[n - 1, a] + g[n - 2, a] > > Table[f[n, a], {n, 0, 10}, {a, 1, 11}] > > Table[g[n, a], {n, 0, 10}, {a, 1, 11}] > > b0 = x /. Solve[x^2 - a*x - 1 == 0, x][[1]] > > a0 = x /. Solve[x^2 - a*x - 1 == 0, x][[2]] > > FullSimplify[a0 - b0] > > FullSimplify[a0 + b0] > > f1[n_, a_] := (a0^n - b0^n)/Sqrt[4 + a^2] > > g1[n_, a_] := (a0^n + b0^n)/a > > Table[FullSimplify[ExpandAll[f1[n, a]]], {n, 0, 10}, {a, 1, 11}] > > Table[FullSimplify[ExpandAll[g1[n, a]]], {n, 0, 10}, {a, 1, 11}] > > v1[n_, a_] = MatrixPower[{{0, 1}, {1, a}}, n].{0, 1} > > v2[n_, a_] = MatrixPower[{{0, 1}, {1, a}}, n].{1, 1} > > Table[FullSimplify[ExpandAll[v1[n, a][[1]]]], {n, 0, 10}, {a, 1, 11}] > > Table[FullSimplify[ExpandAll[v2[n, a][[1]]]], {n, 0, 10}, {a, 1, 11}] > > ListDensityPlot[Table[Mod[f[n, a], 2], {n, 0, 32}, {a, 1, 33}], > > Mesh -> False] > > ListDensityPlot[Table[Mod[g[n, a], 2], {n, 0, 32}, {a, 1, 33}], Mesh - > >> False] > > > Respectfully, Roger L.Bagula > > 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : > >http://www.google.com/profiles/Roger.Bagula > > alternative email: roger.bag... at gmail.com > > Not sure if a question is being raised. This response is in regard to > the remark "The Binet form for the second function type doesn't work." > Your definition of g1 does not agree with the result of RSolve for g. > > In[136]:= Together[ > Expand[g[n, a] /. > RSolve[{g[n, a] == a*g[n - 1, a] + g[n - 2, a], g[0, a] = == 1, > g[1, a] == 1}, g[n, a], n]][[1]]] > > Out[136]= (1/Sqrt[4 + a^2])2^(-1 - > n) (-2 (a - Sqrt[4 + a^2])^n + a (a - Sqrt[4 + a^2])^n + > Sqrt[4 + a^2] (a - Sqrt[4 + a^2])^n + 2 (a + Sqrt[4 + a^2])^n - > a (a + Sqrt[4 + a^2])^n + Sqrt[4 + a^2] (a + Sqrt[4 + a^2])^n) > > From this I form what seems to be a corrected version. > > g2[n_, a_] := > 1/(2*Sqrt[4 + a^2])*((Sqrt[4 + a^2] + a - 2)* > b0^n + (Sqrt[4 + a^2] - a + 2)*a0^n) > > This appears to agree with your recursive definition for g[n,a]. > > Daniel Lichtblau > Wolfram Research Daniel Lichtblau Thanks for your help. The recursions: f(n)=f(n-1)+a*f(n-2) with characteristic polynomials x^2-x-a can be treated the same way. Matrix: {{0,1},{a,1}} for the Markov vector form. Roger Bagula
- References:
- trouble with a Binet in a generalized Pell recursion
- From: Roger Bagula <roger.bagula@gmail.com>
- trouble with a Binet in a generalized Pell recursion