sum done two ways gives different answers in Mathematica
- To: mathgroup at smc.vnet.net
- Subject: [mg106788] sum done two ways gives different answers in Mathematica
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Sat, 23 Jan 2010 07:35:11 -0500 (EST)
The sum: Sum[1/(((-1)^(-I)*2)^n*(n + 1)), {n, 0, Infinity}] gives: -2*(-1)^(-I)*Log[1-(-1)^I/2] N[%]=1.010902 ComplexExpand[1/(((-1)^(-I)*2)^n*(n + 1))] gives 2^(-n)*Exp[-n*Pi]/(1+n) with Infinite sum: Sum[2^(-n)*Exp[-n*Pi]/(1+n), {n, 0, Infinity}] -2*Exp[Pi]*Log[1-Exp[-Pi]/2] N[%]=0.010902 I thought this result was both interesting and puzzling. This idea comes from: Solve[Exp[I*Pi] - Exp[I*Log[x]] == 0, x] {{x -> (-1)^(-I))}} I thought that it might give something related to Pi in an Infinite sum. -- Respectfully, Roger L. Bagula 11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 : http://www.google.com/profiles/Roger.Bagula alternative email: roger.bagula at gmail.com