MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: How to calculate covariant derivative by Mathematica?

Hi Shen,

It depends on the context in which you're working, as a covariant
derivatives can _look_ quite different.
But maybe what you basically need is an operator of the type

In[1]:= DD[t_]:=(D[#,t]+Con[#,t])&

so that
In[2]:= DD[x]@f[x]
Out[3]= Con[f[x],x]+(f^\[Prime])[x]

Then you need to make your connection, Con act properly.  For example,
it should return 0 when acting on scalars, and if you're acting on
explicit Tensors and don't distinguish between contravariant and
covariant, then maybe something like this would work:

In[5]:= Con[expr_?ArrayQ,t_]:=Module[{dim=Dimensions[expr],rep,perms},
rep=Array[Subscript[r, ##][t]&,{dim[[1]],dim[[1]]}];

we can test that this works properly on a (square) matrix:

In[6]:= rep=Array[Subscript[r, ##][t]&,{2,2}]; m=Array[Subscript[z, ##]

In[7]:= Con[m,t]==rep.m+m.rep\[Transpose]//Expand
Out[7]= True

The above can be extended to vector derivatives and associated
Symbolic covariant derivatives are a bit more tricky...

There are some packages out there...  a google search for "mathematica
covariant derivative" brings up a few.
The Wolfram pages to look at are

Finally, if you want to do index / field theory style calculations,
then maybe you could try Cadabra.

Hope some of that helps,


On Jan 23, 8:33 pm, Shen <zshen2... at> wrote:
> I need to calculate covariant derivative by Mathematica. I noticed
> that there is no such a function in Mathematica. Can we define such a
> funcation? I don't know how to do it. Who can tell me how to define
> and calculate covariant derivative with Mathematica?

  • Prev by Date: Re: Creating new ColorFunction / ColorDataFunction
  • Next by Date: Re: Mathematica gets stuck, only thing I can do is quit kernel
  • Previous by thread: Re: How to calculate covariant derivative by Mathematica?
  • Next by thread: The formula of Abraham Moivre