Re: Mathematica Collect function
- To: mathgroup at smc.vnet.net
- Subject: [mg110731] Re: Mathematica Collect function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sat, 3 Jul 2010 08:20:30 -0400 (EDT)
expr = Expand[((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/4*(P20 - P21)]; Your initial form is not what Mathematica considers the simplest form expr // Simplify (1/4)*((Sqrt[2]*i + i - 1)*P10 - (Sqrt[2]*i + i - 1)*P11 - (i + Sqrt[2] + 1)*(P20 - P21)) You need to force it (expr /. {P10 -> x1 + P11, P20 -> x2 + P21} // Simplify) /. {x1 -> (P10 - P11), x2 -> (P20 - P21)} (1/4)*((Sqrt[2]*i + i - 1)*(P10 - P11) - (i + Sqrt[2] + 1)* (P20 - P21)) This is almost your initial form Bob Hanlon ---- Minh <dminhle at gmail.com> wrote: ============= Given that: Expand[((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/ 4*(P20 - P21)] will output -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - ( i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - ( i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4 How do I get from: -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - ( i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - ( i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4 back to ((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/ 4*(P20 - P21) I've tried using the Collect function as follows: Collect[-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/ 4 - (i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (i P20)/4 + P21/ 4 + P21/(2 Sqrt[2]) + (i P21)/4, {(P10 - P11), (P20 - P21)}] but it doesn't seem to collect the terms {(P10 - P11), (P20 - P21)}. Got any suggestions?