Re: Mathematica Collect function
- To: mathgroup at smc.vnet.net
- Subject: [mg110716] Re: Mathematica Collect function
- From: Peter Pein <petsie at dordos.net>
- Date: Sat, 3 Jul 2010 08:17:43 -0400 (EDT)
- References: <i0k2gi$js4$1@smc.vnet.net>
Am Fri, 2 Jul 2010 06:55:14 +0000 (UTC) schrieb Minh <dminhle at gmail.com>: > Given that: > Expand[((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/ > 4*(P20 - P21)] > > will output > -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - ( > i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - ( > i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4 > > How do I get from: > -(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - ( > i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - ( > i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4 > > back to > ((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/ > 4*(P20 - P21) > > I've tried using the Collect function as follows: > Collect[-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/ > 4 - (i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (i P20)/4 + P21/ > 4 + P21/(2 Sqrt[2]) + (i P21)/4, {(P10 - P11), (P20 - P21)}] > but it doesn't seem to collect the terms {(P10 - P11), (P20 - P21)}. > > Got any suggestions? > Introduce temporary expressions Q1,Q1 and do a backsubstituation after Collect[]ing: In[7]:= Collect[-(P10/4)+(i P10)/4+(i P10)/(2 Sqrt[2])+P11/4-(i P11)/4-(i P11)/(2 Sqrt[2])-P20/4-P20/(2 Sqrt[2])-(i P20)/4+P21/4+P21/(2 Sqrt[2])+(i P21)/4 /. {P10->Q1+P11,P20->Q2+P21},Q1|Q2,FullSimplify] /. {Q1->P10-P11,Q2->P20-P21} Out[7]= 1/4 (-1+i+Sqrt[2] i) (P10-P11)+1/4 (-1-Sqrt[2]-i) (P20-P21) There is a difference in your outcome and mine. I think you've got the wrong sign for the factor of (P10-P11) and misspelled an "i" by "1". hth, Peter