Re: Mathematica Collect function
- To: mathgroup at smc.vnet.net
- Subject: [mg110766] Re: Mathematica Collect function
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Mon, 5 Jul 2010 06:03:10 -0400 (EDT)
expr1 = -(P10 P20 P30)/Sqrt[2] + (i P10 P20 P30)/Sqrt[2] - i P11 P20 P30 + i P10 P21 P30 + (P11 P21 P30)/Sqrt[2] - (i P11 P21 P30)/Sqrt[2] - P10 P20 P31 - (P11 P20 P31)/Sqrt[2] - (i P11 P20 P31)/Sqrt[2] + (P10 P21 P31)/Sqrt[2] + (i P10 P21 P31)/Sqrt[2] + P11 P21 P31; expr2 = ((1 + Sqrt[2]) i - 1)/4* (P10 - P11) - (1 + Sqrt[2] + i)/4* (P20 - P21) + (1 - Sqrt[2] + i)/4* (P10 - P11)*(P30 - P31) + (1 + (Sqrt[2] - 1) i)/4* (P20 - P21)*(P30 - P31); To get the form of expr2 from expr1 expr22 = Simplify[expr1, { P10 + P11 == t, P20 + P21 == t, P30 + P31 == t, P10 - P11 == x1, P20 - P21 == x2, P30 - P31 == x3}] /. { t -> 1, x1 -> P10 - P11, x2 -> P20 - P21, x3 -> P30 - P31} 1/4 ((i-Sqrt[2]+1) (P10-P11) (P30-P31)+ (Sqrt[2] i+i-1) (P10-P11)+ ((Sqrt[2]-1) i+1) (P20-P21) (P30-P31)- (i+Sqrt[2]+1) (P20-P21)) expr2 == expr22 // Simplify True Bob Hanlon ---- Minh <dminhle at gmail.com> wrote: ============= Many thanks to all who have responded to my question. The question I posted was actually a smaller section of what I had originally planned on asking. I was hoping to use what I had learnt from your answers and apply it to a larger problem but I haven't had much success. What I want is to go from expression1: -((P10 P20 P30)/Sqrt[2]) + (i P10 P20 P30)/Sqrt[2] - i P11 P20 P30 + i P10 P21 P30 + (P11 P21 P30)/Sqrt[2] - (i P11 P21 P30)/Sqrt[2] - P10 P20 P31 - (P11 P20 P31)/Sqrt[2] - (i P11 P20 P31)/Sqrt[2] + ( P10 P21 P31)/Sqrt[2] + (i P10 P21 P31)/Sqrt[2] + P11 P21 P31 to expression2: ((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - ( 1 + Sqrt[2] + i)/4*(P20 - P21) + ( 1 - Sqrt[2] + i)/4*(P10 - P11)*(P30 - P31) + ( 1 + (Sqrt[2] - 1) i)/4*(P20 - P21)*(P30 - P31) Given that P10 + P11=1,P20 + P21=1 and P30 + P31=1, expression 2 becomes expression3: ((1 + Sqrt[2]) i - 1)/4*(P10 - P11)*(P20 + P21)*(P30 + P31) - ( 1 + Sqrt[2] + i)/4*(P10 + P11)*(P20 - P21)*(P30 + P31) + ( 1 - Sqrt[2] + i)/4*(P10 - P11)*(P20 + P21)*(P30 - P31) + ( 1 + (Sqrt[2] - 1) i)/4*(P10 + P11)*(P20 - P21)*(P30 - P31) I know that they are equal because when I use Expand[expression3], I obtain expression1. I've tried forcing the simplification by introducing temporary expressions and back substituting to go from expression1 to expression 3 but I've realized then it doesn't work when introducing the extra terms (P10 + P11),(P20 + P21) and (P30 + P31). Any ideas? Thanks, Minh