Reducible Trinomials How to do quickest algoritm
- To: mathgroup at smc.vnet.net
- Subject: [mg110548] Reducible Trinomials How to do quickest algoritm
- From: Artur <grafix at csl.pl>
- Date: Fri, 25 Jun 2010 07:26:24 -0400 (EDT)
- Reply-to: grafix at csl.pl
Dear Mathethica Gurus, I'm looking for quick prcedure for finding trinoamials x^n +Ax +B for large {n,50,1000} range which have cubic unreducible factor (x^3+p x^2+q x+r). My prcedure is ver slowly and for range n 183-190 need whole day Here is Timing[aa = {}; Do[Print[n]; kk = CoefficientList[ PolynomialRemainder[x^n + a x + b, x^3 + p x^2 + q x + r, x], x]; gg = Solve[{kk[[1]] == 0, kk[[2]] == 0, kk[[3]] == 0}, {a, b, r}]; rr = (r /. gg[[1]])[[1]][[1]]; rr = rr /. #1 -> y;(*Print[rr];*) Do[Do[kk = FactorList[rr]; If[Length[kk] > 2, Do[kkk = kk[[m]][[1]]; If[Length[kkk] == 2, rrr = Solve[kkk == 0, y];(*Print[{-1, r->y/. rrr[[1]]}];*) kkkk = CoefficientList[ PolynomialRemainder[ x^n + a x + b, (x^3 + p x^2 + q x + r) /. r -> y /. rrr[[1]], x], x];(*Print[kkkk];*) bb = (b /. Solve[kkkk[[1]] == 0, b])[[1]]; aaa = (a /. Solve[kkkk[[2]] == 0, a])[[1]];(*Print[{bb,aaa}];*) If[(bb != 0) && (aaa != 0), AppendTo[ aa, {n, p, q, y /. rrr[[1]], x^n + aaa x + bb, Factor[x^n + aaa x + bb]}]; Print[{n, p, q, kkkk, kk}]]], {m, 2, Length[kk]}]], {p, -30, 30}], {q, -100, 100}], {n, 183, 1000}]; aa] I will be greatfuull for any help! Largest know trinomials are x^52+2^34*3*53x+2^35*103 which have cubic factor x^3+2x^2+4x+4 I don't find any more from 53 up to n=186. Best wishes Artur