Re: DownValues
- To: mathgroup at smc.vnet.net
- Subject: [mg113719] Re: DownValues
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Tue, 9 Nov 2010 03:52:00 -0500 (EST)
The documentation on SubValues is extremely limited but it is not totally undocumented. Names["*Values"] {DefaultValues, DownValues, DynamicModuleValues, FormatValues, NValues, OwnValues, SingularValues, SubValues, UpValues} Information[SubValues] SubValues[f] gives a list of transformation rules corresponding to all subvalues (values for f[x,\[Ellipsis]][\[Ellipsis]], etc.) defined for the symbol f. Attributes[SubValues]={HoldAll,Protected} Options[SubValues]={Sort->True} It is also referenced in: ref/message/DownValues/vlist ref/message/DownValues/vrule ParallelTools/tutorial/RemoteDefinitions Bob Hanlon ---- Albert Retey <awnl at gmx-topmail.de> wrote: ============= Am 08.11.2010 09:38, schrieb Stephan: > Hi, > > Is there any way to find out about definitions like: > > f[1][2] = 3 ? > > Here is a sample run: > > In[1]:= f[1][2] = 3 > Out[1]= 3 > In[2]:= DownValues[f] > Out[2]= {} > In[3]:= DownValues[f[1]] > During evaluation of In[3]:= DownValues::"sym" : " > StyleBox[\"\\\"\< is expected to be a symbol.\>\\\"\", \"MT\"] \ > Out[3]= DownValues[f[1]] > > So with "DownValues" I can't seem to learn about the definition f[1][2]... SubValues, unfortunatly seem to be undocumented, but gives you what you are looking for: SubValues[f] hth, albert